Suppr超能文献

DRISTI:一种用于糖尿病视网膜病变诊断的混合深度神经网络。

DRISTI: a hybrid deep neural network for diabetic retinopathy diagnosis.

作者信息

Kumar Gaurav, Chatterjee Shraban, Chattopadhyay Chiranjoy

机构信息

Indian Institute of Technology Jodhpur, Jodhpur, India.

出版信息

Signal Image Video Process. 2021;15(8):1679-1686. doi: 10.1007/s11760-021-01904-7. Epub 2021 Apr 16.

Abstract

Diabetic retinopathy (DR) is a significant reason for the global increase in visual loss. Studies show that timely treatment can significantly bring down such incidents. Hence, it is essential to distinguish the stages and severity of DR to recommend needed medical attention. In this view, this paper presents DRISTI (Diabetic Retinopathy classIfication by analySing reTinal Images), where a hybrid deep learning model composed of VGG16 and capsule network is proposed, which yields statistically significant performance improvement over the state of the art. To validate our claim, we have reported detailed experimental and ablation studies. We have also created an augmented dataset to increase the APTOS dataset's size and check how robust the model is. The five-class training and validation accuracy for the expanded dataset is and . The two-class training and validation accuracy on augmented APTOS is and . Extending the two-class model for the mixed dataset, we get a training and validation accuracy of and , respectively. We have also performed cross-dataset and mixed dataset testing to demonstrate the efficiency of DRISTI.

摘要

糖尿病视网膜病变(DR)是全球视力丧失增加的一个重要原因。研究表明,及时治疗可显著减少此类事件。因此,区分DR的阶段和严重程度对于推荐所需的医疗护理至关重要。有鉴于此,本文提出了DRISTI(通过分析视网膜图像进行糖尿病视网膜病变分类),其中提出了一种由VGG16和胶囊网络组成的混合深度学习模型,该模型在性能上比现有技术有统计学上的显著提高。为了验证我们的主张,我们报告了详细的实验和消融研究。我们还创建了一个增强数据集,以增加APTOS数据集的大小,并检查模型的稳健性。扩展数据集的五类训练和验证准确率分别为 和 。增强APTOS上的二类训练和验证准确率分别为 和 。将二类模型扩展到混合数据集,我们分别得到了 和 的训练和验证准确率。我们还进行了跨数据集和混合数据集测试,以证明DRISTI的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/553f/8051933/a4633562ff65/11760_2021_1904_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验