Bali Manish, Mishra Ved Prakash, Yenkikar Anuradha, Chikmurge Diptee
School of Engineering, Amity University Dubai Campus, Dubai, 25314, UAE.
Department of CSE(AI), Vishwakarma Institute of Information Technology, Pune, 411048, Maharashtra, India.
MethodsX. 2025 Jan 25;14:103185. doi: 10.1016/j.mex.2025.103185. eCollection 2025 Jun.
Diabetic Retinopathy (DR), a diabetes-related eye condition, damages retinal blood vessels and can lead to vision loss if undetected early. Precise diagnosis is challenging due to subtle, varied symptoms. While classical deep learning (DL) models like CNNs and ResNet's are widely used, they face resource and accuracy limitations. Quantum computing, leveraging quantum mechanics, offers revolutionary potential for faster problem-solving across fields like cryptography, optimization, and medicine. This research introduces QuantumNet, a hybrid model combining classical DL and quantum transfer learning to enhance DR detection. QuantumNet demonstrates high accuracy and resource efficiency, providing a transformative solution for DR detection and broader medical imaging applications. The method is as follows:•Evaluate three classical deep learning models-CNN, ResNet50, and MobileNetV2-using the APTOS 2019 blindness detection dataset on Kaggle to identify the best-performing model for integration.•QuantumNet combines the best-performing classical DL model for feature extraction with a variational quantum classifier, leveraging quantum transfer learning for enhanced diagnostics, validated statistically and on Google Cirq using standard metrics.•QuantumNet achieves 94.11 % accuracy, surpassing classical DL models and prior research by 11.93 percentage points, demonstrating its potential for accurate, efficient DR detection and broader medical imaging applications.
糖尿病性视网膜病变(DR)是一种与糖尿病相关的眼部疾病,会损害视网膜血管,如果早期未被发现,可能导致视力丧失。由于症状细微且多样,精确诊断具有挑战性。虽然像卷积神经网络(CNNs)和残差网络(ResNet)这样的经典深度学习(DL)模型被广泛使用,但它们面临资源和准确性方面的限制。量子计算利用量子力学,在密码学、优化和医学等领域为更快地解决问题提供了革命性的潜力。本研究引入了QuantumNet,这是一种将经典深度学习与量子迁移学习相结合的混合模型,以增强糖尿病性视网膜病变的检测。QuantumNet展示了高准确性和资源效率,为糖尿病性视网膜病变检测及更广泛的医学成像应用提供了变革性的解决方案。方法如下:
• 使用Kaggle上的APTOS 2019失明检测数据集评估三种经典深度学习模型——卷积神经网络(CNN)、残差网络50(ResNet50)和MobileNetV2,以确定用于集成的性能最佳的模型。
• QuantumNet将性能最佳的经典深度学习模型用于特征提取,并与变分量子分类器相结合,利用量子迁移学习增强诊断能力,并使用标准指标在统计学上和谷歌Cirq上进行验证。
• QuantumNet实现了94.11%的准确率,比经典深度学习模型和先前的研究高出11.93个百分点,证明了其在准确、高效的糖尿病性视网膜病变检测及更广泛的医学成像应用方面的潜力。