Suppr超能文献

推动人群健康研究:关于合理且可采取行动的效应量的考量

Powering population health research: Considerations for plausible and actionable effect sizes.

作者信息

Matthay Ellicott C, Hagan Erin, Gottlieb Laura M, Tan May Lynn, Vlahov David, Adler Nancy, Glymour M Maria

机构信息

Center for Health and Community, University of California, San Francisco, 3333 California St., Suite 465, Campus Box 0844, San Francisco, CA, 94143-0844, USA.

Department of Epidemiology and Biostatistics, University of California, San Francisco, 550 16th Street, 2nd Floor, Campus Box 0560, San Francisco, CA, 94143, USA.

出版信息

SSM Popul Health. 2021 Apr 6;14:100789. doi: 10.1016/j.ssmph.2021.100789. eCollection 2021 Jun.

Abstract

Evidence for Action (E4A), a signature program of the Robert Wood Johnson Foundation, funds investigator-initiated research on the impacts of social programs and policies on population health and health inequities. Across thousands of letters of intent and full proposals E4A has received since 2015, one of the most common methodological challenges faced by applicants is selecting realistic effect sizes to inform calculations of power, sample size, and minimum detectable effect (MDE). E4A prioritizes health studies that are both (1) adequately powered to detect effect sizes that may reasonably be expected for the given intervention and (2) likely to achieve intervention effects sizes that, if demonstrated, correspond to actionable evidence for population health stakeholders. However, little guidance exists to inform the selection of effect sizes for population health research proposals. We draw on examples of five rigorously evaluated population health interventions. These examples illustrate considerations for selecting realistic and actionable effect sizes as inputs to calculations of power, sample size and MDE for research proposals to study population health interventions. We show that plausible effects sizes for population health interventions may be smaller than commonly cited guidelines suggest. Effect sizes achieved with population health interventions depend on the characteristics of the intervention, the target population, and the outcomes studied. Population health impact depends on the proportion of the population receiving the intervention. When adequately powered, even studies of interventions with small effect sizes can offer valuable evidence to inform population health if such interventions can be implemented broadly. Demonstrating the effectiveness of such interventions, however, requires large sample sizes.

摘要

“行动证据”(E4A)是罗伯特·伍德·约翰逊基金会的一项标志性项目,资助由研究人员发起的关于社会项目和政策对人口健康及健康不平等影响的研究。自2015年以来,在E4A收到的数千份意向书和完整提案中,申请者面临的最常见方法学挑战之一是选择现实的效应量,以便为功效、样本量和最小可检测效应(MDE)的计算提供依据。E4A优先考虑的健康研究既要(1)有足够的功效来检测给定干预可能合理预期的效应量,又要(2)有可能实现干预效应量,若能得到证实,这些效应量将为人口健康利益相关者提供可采取行动的证据。然而,对于为人口健康研究提案选择效应量,几乎没有指导意见。我们借鉴了五个经过严格评估的人口健康干预实例。这些实例说明了选择现实且可采取行动的效应量时的考虑因素,这些效应量可作为研究人口健康干预的提案中功效、样本量和MDE计算的输入。我们表明,人口健康干预可能的效应量可能比通常引用的指南所建议的要小。人口健康干预所实现的效应量取决于干预的特征、目标人群和所研究的结果。人口健康影响取决于接受干预的人口比例。如果有足够的功效,即使是对效应量较小的干预进行研究,若此类干预能够广泛实施,也可为人口健康提供有价值的证据。然而,要证明此类干预的有效性需要大样本量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac1f/8059081/6e9d7d704379/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验