Suppr超能文献

基于主体的人类结核分枝杆菌感染疾病模型的验证。

Verification of an agent-based disease model of human Mycobacterium tuberculosis infection.

机构信息

Department of Industrial Engineering, Alma Mater Studiorum - University of Bologna, Bologna, Italy.

Medical Technology Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.

出版信息

Int J Numer Method Biomed Eng. 2021 Jul;37(7):e3470. doi: 10.1002/cnm.3470. Epub 2021 May 12.

Abstract

Agent-based models (ABMs) are a powerful class of computational models widely used to simulate complex phenomena in many different application areas. However, one of the most critical aspects, poorly investigated in the literature, regards an important step of the model credibility assessment: solution verification. This study overcomes this limitation by proposing a general verification framework for ABMs that aims at evaluating the numerical errors associated with the model. A step-by-step procedure, which consists of two main verification studies (deterministic and stochastic model verification), is described in detail and applied to a specific mission critical scenario: the quantification of the numerical approximation error for UISS-TB, an ABM of the human immune system developed to predict the progression of pulmonary tuberculosis. Results provide indications on the possibility to use the proposed model verification workflow to systematically identify and quantify numerical approximation errors associated with UISS-TB and, in general, with any other ABMs.

摘要

基于代理的模型(ABM)是一类强大的计算模型,广泛应用于模拟许多不同应用领域的复杂现象。然而,文献中很少研究模型可信度评估的一个最重要方面:解决方案验证。本研究通过提出一种通用的 ABM 验证框架来克服这一限制,该框架旨在评估与模型相关的数值误差。详细描述了一个逐步的过程,其中包括两个主要的验证研究(确定性和随机模型验证),并将其应用于一个特定的关键任务场景:量化 UISS-TB 的数值逼近误差,UISS-TB 是一种用于预测肺结核进展的人体免疫系统的 ABM。结果表明,可以使用所提出的模型验证工作流程来系统地识别和量化与 UISS-TB 相关的、以及与任何其他 ABM 相关的数值逼近误差。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c26e/8365724/0581d953fa8b/CNM-37-e3470-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验