Suppr超能文献

基于主体的人类结核分枝杆菌感染疾病模型的验证。

Verification of an agent-based disease model of human Mycobacterium tuberculosis infection.

机构信息

Department of Industrial Engineering, Alma Mater Studiorum - University of Bologna, Bologna, Italy.

Medical Technology Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.

出版信息

Int J Numer Method Biomed Eng. 2021 Jul;37(7):e3470. doi: 10.1002/cnm.3470. Epub 2021 May 12.

Abstract

Agent-based models (ABMs) are a powerful class of computational models widely used to simulate complex phenomena in many different application areas. However, one of the most critical aspects, poorly investigated in the literature, regards an important step of the model credibility assessment: solution verification. This study overcomes this limitation by proposing a general verification framework for ABMs that aims at evaluating the numerical errors associated with the model. A step-by-step procedure, which consists of two main verification studies (deterministic and stochastic model verification), is described in detail and applied to a specific mission critical scenario: the quantification of the numerical approximation error for UISS-TB, an ABM of the human immune system developed to predict the progression of pulmonary tuberculosis. Results provide indications on the possibility to use the proposed model verification workflow to systematically identify and quantify numerical approximation errors associated with UISS-TB and, in general, with any other ABMs.

摘要

基于代理的模型(ABM)是一类强大的计算模型,广泛应用于模拟许多不同应用领域的复杂现象。然而,文献中很少研究模型可信度评估的一个最重要方面:解决方案验证。本研究通过提出一种通用的 ABM 验证框架来克服这一限制,该框架旨在评估与模型相关的数值误差。详细描述了一个逐步的过程,其中包括两个主要的验证研究(确定性和随机模型验证),并将其应用于一个特定的关键任务场景:量化 UISS-TB 的数值逼近误差,UISS-TB 是一种用于预测肺结核进展的人体免疫系统的 ABM。结果表明,可以使用所提出的模型验证工作流程来系统地识别和量化与 UISS-TB 相关的、以及与任何其他 ABM 相关的数值逼近误差。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c26e/8365724/0581d953fa8b/CNM-37-e3470-g005.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验