Suppr超能文献

将新一代结构预测器扩展到考虑动力学和变构。

Extending the New Generation of Structure Predictors to Account for Dynamics and Allostery.

机构信息

Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7600001, Israel.

Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7600001, Israel.

出版信息

J Mol Biol. 2021 Oct 1;433(20):167007. doi: 10.1016/j.jmb.2021.167007. Epub 2021 Apr 24.

Abstract

Recent progress in structure-prediction methods that rely on deep learning suggests that the atomic structure of almost any protein may soon be predictable directly from its amino acid sequence. This much-awaited revolution was driven by substantial improvements in the reliability of methods for inferring the spatial distances between amino acid pairs from an analysis of homologous sequences. Improved reliability has been accompanied, however, by a reduced ability to detect amino acid relationships that are not due to direct spatial contacts, such as those that arise from protein dynamics or allostery. Given the central importance of dynamics and allostery to protein activity, we argue that an important future advance would extend modeling beyond predicting a single static structure. Here, we briefly review some of the developments that have led to the remarkable recent achievement in structure prediction and speculate what methods and sources of information may be leveraged in the future to develop a modeling framework that addresses protein dynamics and allostery.

摘要

最近在依赖深度学习的结构预测方法方面取得的进展表明,几乎任何蛋白质的原子结构都可能很快可以直接从其氨基酸序列中预测出来。这种期待已久的革命是由从同源序列分析推断氨基酸对之间空间距离的方法的可靠性的大幅提高所推动的。然而,可靠性的提高伴随着检测不是由于直接空间接触的氨基酸关系的能力的降低,例如那些由于蛋白质动力学或变构作用引起的关系。鉴于动力学和变构作用对蛋白质活性的重要性,我们认为,未来的一个重要进展将是将建模扩展到预测单个静态结构之外。在这里,我们简要回顾了一些导致最近在结构预测方面取得显著成就的发展,并推测未来可能利用哪些方法和信息来源来开发一个解决蛋白质动力学和变构作用的建模框架。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验