文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种用于头颈部大体肿瘤体积分割的交互式深度学习工作流程。

An interactive deep-learning workflow for head and neck gross tumour volume segmentation.

作者信息

Wei Zixiang, Ren Jintao, Eriksen Jesper Grau, Jensen Kenneth, Mortensen Hanna Rahbek, Korreman Stine Sofia, Nijkamp Jasper

机构信息

Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.

Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark.

出版信息

Phys Imaging Radiat Oncol. 2025 Aug 5;35:100820. doi: 10.1016/j.phro.2025.100820. eCollection 2025 Jul.


DOI:10.1016/j.phro.2025.100820
PMID:40809788
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12348336/
Abstract

BACKGROUND AND PURPOSE: Deep learning (DL)-based auto-segmentation of head and neck cancer (HNC) gross tumour volumes remains challenging due to anatomical complexity and limited accuracy. We propose an interactive DL (iDL) workflow that integrates clinician input to enhance segmentation performance and clinical usability. The iDL approach was evaluated using simulations on two datasets and an observer study. MATERIALS AND METHODS: Two iDL approaches were developed and integrated into a workflow: (1) for primary tumour (GTVt) segmentation, clinicians marked the tumour centre and delineated three orthogonal slices to enable patient-specific fine-tuning of a pre-trained 3D UNet; (2) for lymph nodes (GTVn), clinician-provided clicks identified involved lymph nodes used as attention maps in a separate UNet. Methods were evaluated using independent simulations on an internal dataset (n = 204) and the HECKTOR 2022 dataset (n = 524), using aggregated dice-similarity-coefficient (DSCagg). An additional observer study with three radiation oncologists assessed usability and efficiency, using normalized added path length (APL) and the System Usability Scale (SUS). RESULTS: The iDL workflow achieved high segmentation accuracy, with a DSCagg of 0.84 (internal) and 0.88 (HECKTOR) for GTVt, and 0.83 and 0.85 for GTVn. GTVn required minimal correction (mean APL: 4 % vs. 6 % vs. 11 %); two observers made limited corrections to GTVt (mean APL: 11 % vs. 6 % vs. 39 %). Mean segmentation time was 12 min per case. SUS scores ranged from 87.5 to 100, indicating high usability. CONCLUSION: The iDL workflow achieved high accuracy and usability with limited correction time, offering a practical and efficient solution for HNC segmentation in radiotherapy.

摘要

背景与目的:由于解剖结构复杂且准确性有限,基于深度学习(DL)的头颈癌(HNC)大体肿瘤体积自动分割仍具有挑战性。我们提出了一种交互式深度学习(iDL)工作流程,该流程整合了临床医生的输入,以提高分割性能和临床可用性。使用两个数据集上的模拟和一项观察者研究对iDL方法进行了评估。 材料与方法:开发了两种iDL方法并将其整合到一个工作流程中:(1)对于原发肿瘤(GTVt)分割,临床医生标记肿瘤中心并勾勒出三个正交切片,以便对预训练的3D UNet进行患者特异性微调;(2)对于淋巴结(GTVn),临床医生提供的点击确定了受累淋巴结,这些淋巴结在单独的UNet中用作注意力图。使用内部数据集(n = 204)和HECKTOR 2022数据集(n = 524)上的独立模拟,使用聚合骰子相似系数(DSCagg)对方法进行评估。另外一项由三名放射肿瘤学家参与的观察者研究,使用归一化增加路径长度(APL)和系统可用性量表(SUS)评估了可用性和效率。 结果:iDL工作流程实现了高分割准确性,GTVt的DSCagg在内部数据集上为0.84,在HECKTOR数据集上为0.88,GTVn的DSCagg分别为0.83和0.85。GTVn所需的校正最少(平均APL:4%对6%对11%);两名观察者对GTVt进行的校正有限(平均APL:11%对6%对39%)。平均分割时间为每例12分钟。SUS评分范围为87.5至100,表明可用性高。 结论:iDL工作流程在有限的校正时间内实现了高精度和高可用性,为放射治疗中的HNC分割提供了一种实用且高效的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2886/12348336/76047de3a512/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2886/12348336/b2bb7414ca2d/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2886/12348336/4152e57ae49f/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2886/12348336/b5607dc8124f/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2886/12348336/6da4b9f41246/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2886/12348336/76047de3a512/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2886/12348336/b2bb7414ca2d/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2886/12348336/4152e57ae49f/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2886/12348336/b5607dc8124f/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2886/12348336/6da4b9f41246/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2886/12348336/76047de3a512/gr5.jpg

相似文献

[1]
An interactive deep-learning workflow for head and neck gross tumour volume segmentation.

Phys Imaging Radiat Oncol. 2025-8-5

[2]
ES-UNet: efficient 3D medical image segmentation with enhanced skip connections in 3D UNet.

BMC Med Imaging. 2025-8-13

[3]
Integrated Deep Learning Model for the Detection, Segmentation, and Morphologic Analysis of Intracranial Aneurysms Using CT Angiography.

Radiol Artif Intell. 2025-1

[4]
Large-scale convolutional neural network for clinical target and multi-organ segmentation in gynecologic brachytherapy via multi-stage learning.

Med Phys. 2025-8

[5]
Point-cloud segmentation with in-silico data augmentation for prostate cancer treatment.

Med Phys. 2025-4-3

[6]
Improving the Precision of Deep-Learning-Based Head and Neck Target Auto-Segmentation by Leveraging Radiology Reports Using a Large Language Model.

Cancers (Basel). 2025-6-10

[7]
Geometrically focused training and evaluation of organs-at-risk segmentation via deep learning.

Med Phys. 2025-7

[8]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

[9]
Non-orthogonal kV imaging guided patient position verification in non-coplanar radiation therapy with dataset-free implicit neural representation.

Med Phys. 2025-5-19

[10]
Uncertainty-aware deep learning for segmentation of primary tumor and pathologic lymph nodes in oropharyngeal cancer: Insights from a multi-center cohort.

Comput Med Imaging Graph. 2025-7

本文引用的文献

[1]
Interactive 3D segmentation for primary gross tumor volume in oropharyngeal cancer.

Sci Rep. 2025-8-5

[2]
Overview of the Head and Neck Tumor Segmentation for Magnetic Resonance Guided Applications (HNTS-MRG) 2024 Challenge.

Head Neck Tumor Segm MR Guid Appl (2024). 2025

[3]
SegRap2023: A benchmark of organs-at-risk and gross tumor volume Segmentation for Radiotherapy Planning of Nasopharyngeal Carcinoma.

Med Image Anal. 2025-4

[4]
The effect of editing clinical contours on deep-learning segmentation accuracy of the gross tumor volume in glioblastoma.

Phys Imaging Radiat Oncol. 2024-8-5

[5]
Deep Interactive Segmentation of Medical Images: A Systematic Review and Taxonomy.

IEEE Trans Pattern Anal Mach Intell. 2024-12

[6]
Clinical validation of commercial deep-learning based auto-segmentation models for organs at risk in the head and neck region: a single institution study.

Front Oncol. 2024-7-11

[7]
The Evolving Role of Artificial Intelligence in Radiotherapy Treatment Planning-A Literature Review.

Clin Oncol (R Coll Radiol). 2024-10

[8]
Multi-modal segmentation with missing image data for automatic delineation of gross tumor volumes in head and neck cancers.

Med Phys. 2024-10

[9]
Comparison of deep learning networks for fully automated head and neck tumor delineation on multi-centric PET/CT images.

Radiat Oncol. 2024-1-8

[10]
Automatic Segmentation with Deep Learning in Radiotherapy.

Cancers (Basel). 2023-9-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索