Wei Zixiang, Ren Jintao, Eriksen Jesper Grau, Jensen Kenneth, Mortensen Hanna Rahbek, Korreman Stine Sofia, Nijkamp Jasper
Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark.
Phys Imaging Radiat Oncol. 2025 Aug 5;35:100820. doi: 10.1016/j.phro.2025.100820. eCollection 2025 Jul.
BACKGROUND AND PURPOSE: Deep learning (DL)-based auto-segmentation of head and neck cancer (HNC) gross tumour volumes remains challenging due to anatomical complexity and limited accuracy. We propose an interactive DL (iDL) workflow that integrates clinician input to enhance segmentation performance and clinical usability. The iDL approach was evaluated using simulations on two datasets and an observer study. MATERIALS AND METHODS: Two iDL approaches were developed and integrated into a workflow: (1) for primary tumour (GTVt) segmentation, clinicians marked the tumour centre and delineated three orthogonal slices to enable patient-specific fine-tuning of a pre-trained 3D UNet; (2) for lymph nodes (GTVn), clinician-provided clicks identified involved lymph nodes used as attention maps in a separate UNet. Methods were evaluated using independent simulations on an internal dataset (n = 204) and the HECKTOR 2022 dataset (n = 524), using aggregated dice-similarity-coefficient (DSCagg). An additional observer study with three radiation oncologists assessed usability and efficiency, using normalized added path length (APL) and the System Usability Scale (SUS). RESULTS: The iDL workflow achieved high segmentation accuracy, with a DSCagg of 0.84 (internal) and 0.88 (HECKTOR) for GTVt, and 0.83 and 0.85 for GTVn. GTVn required minimal correction (mean APL: 4 % vs. 6 % vs. 11 %); two observers made limited corrections to GTVt (mean APL: 11 % vs. 6 % vs. 39 %). Mean segmentation time was 12 min per case. SUS scores ranged from 87.5 to 100, indicating high usability. CONCLUSION: The iDL workflow achieved high accuracy and usability with limited correction time, offering a practical and efficient solution for HNC segmentation in radiotherapy.
背景与目的:由于解剖结构复杂且准确性有限,基于深度学习(DL)的头颈癌(HNC)大体肿瘤体积自动分割仍具有挑战性。我们提出了一种交互式深度学习(iDL)工作流程,该流程整合了临床医生的输入,以提高分割性能和临床可用性。使用两个数据集上的模拟和一项观察者研究对iDL方法进行了评估。 材料与方法:开发了两种iDL方法并将其整合到一个工作流程中:(1)对于原发肿瘤(GTVt)分割,临床医生标记肿瘤中心并勾勒出三个正交切片,以便对预训练的3D UNet进行患者特异性微调;(2)对于淋巴结(GTVn),临床医生提供的点击确定了受累淋巴结,这些淋巴结在单独的UNet中用作注意力图。使用内部数据集(n = 204)和HECKTOR 2022数据集(n = 524)上的独立模拟,使用聚合骰子相似系数(DSCagg)对方法进行评估。另外一项由三名放射肿瘤学家参与的观察者研究,使用归一化增加路径长度(APL)和系统可用性量表(SUS)评估了可用性和效率。 结果:iDL工作流程实现了高分割准确性,GTVt的DSCagg在内部数据集上为0.84,在HECKTOR数据集上为0.88,GTVn的DSCagg分别为0.83和0.85。GTVn所需的校正最少(平均APL:4%对6%对11%);两名观察者对GTVt进行的校正有限(平均APL:11%对6%对39%)。平均分割时间为每例12分钟。SUS评分范围为87.5至100,表明可用性高。 结论:iDL工作流程在有限的校正时间内实现了高精度和高可用性,为放射治疗中的HNC分割提供了一种实用且高效的解决方案。
Phys Imaging Radiat Oncol. 2025-8-5
BMC Med Imaging. 2025-8-13
Head Neck Tumor Segm MR Guid Appl (2024). 2025
Phys Imaging Radiat Oncol. 2024-8-5
IEEE Trans Pattern Anal Mach Intell. 2024-12
Clin Oncol (R Coll Radiol). 2024-10
Cancers (Basel). 2023-9-1