Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003.
Biological Design Center, Boston University, Boston, MA 02215.
Proc Natl Acad Sci U S A. 2021 May 4;118(18). doi: 10.1073/pnas.2024581118.
Cyclic actuation is critical for driving motion and transport in living systems, ranging from oscillatory motion of bacterial flagella to the rhythmic gait of terrestrial animals. These processes often rely on dynamic and responsive networks of oscillators-a regulatory control system that is challenging to replicate in synthetic active matter. Here, we describe a versatile platform of light-driven active particles with interaction geometries that can be reconfigured on demand, enabling the construction of oscillator and spinner networks. We employ optically induced Marangoni trapping of particles confined to an air-water interface and subjected to patterned illumination. Thermal interactions among multiple particles give rise to complex coupled oscillatory and rotational motions, thus opening frontiers in the design of reconfigurable, multiparticle networks exhibiting collective behavior.
循环驱动对于生命系统中的运动和输运至关重要,从细菌鞭毛的振荡运动到陆地动物的有节奏步态。这些过程通常依赖于振荡器的动态和响应性网络——这是一个在合成活性物质中难以复制的调控控制系统。在这里,我们描述了一个具有可按需重新配置的相互作用几何形状的光驱动活性粒子的多功能平台,从而能够构建振荡器和旋转器网络。我们采用受图案化照明约束的空气-水界面上的光诱导马兰戈尼捕获粒子。多个粒子之间的热相互作用会产生复杂的耦合振荡和旋转运动,从而为设计具有集体行为的可重构多粒子网络开辟了新的前沿。