Faculty of Biology, Institute of Biology II, University of Freiburg, Freiburg, Germany.
Centers for Biological Signalling Studies BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.
Nat Chem Biol. 2021 Jul;17(7):817-827. doi: 10.1038/s41589-021-00787-6. Epub 2021 Apr 26.
The L-arabinose-responsive AraC and its cognate P promoter underlie one of the most often used chemically inducible prokaryotic gene expression systems in microbiology and synthetic biology. Here, we change the sensing capability of AraC from L-arabinose to blue light, making its dimerization and the resulting P activation light-inducible. We engineer an entire family of blue light-inducible AraC dimers in Escherichia coli (BLADE) to control gene expression in space and time. We show that BLADE can be used with pre-existing L-arabinose-responsive plasmids and strains, enabling optogenetic experiments without the need to clone. Furthermore, we apply BLADE to control, with light, the catabolism of L-arabinose, thus externally steering bacterial growth with a simple transformation step. Our work establishes BLADE as a highly practical and effective optogenetic tool with plug-and-play functionality-features that we hope will accelerate the broader adoption of optogenetics and the realization of its vast potential in microbiology, synthetic biology and biotechnology.
L-阿拉伯糖响应型 AraC 及其同源 P 启动子是微生物学和合成生物学中最常用的化学诱导原核基因表达系统之一。在这里,我们将 AraC 的感应能力从 L-阿拉伯糖改变为蓝光,使其二聚化并激活 P,从而实现光诱导。我们在大肠杆菌中设计了一整套蓝光诱导型 AraC 二聚体(BLADE),以实现时空基因表达的控制。我们表明,BLADE 可以与现有的 L-阿拉伯糖响应型质粒和菌株一起使用,从而无需克隆即可进行光遗传学实验。此外,我们应用 BLADE 用光来控制 L-阿拉伯糖的分解代谢,从而通过简单的转化步骤,用光来外部控制细菌的生长。我们的工作确立了 BLADE 作为一种高度实用和有效的光遗传学工具,具有即插即用的功能,我们希望这些功能将加速光遗传学的更广泛采用,并实现其在微生物学、合成生物学和生物技术中的巨大潜力。