Suppr超能文献

另一双智能之眼:人工智能在急诊放射学腹部盆腔病变成像中的应用

An Extra Set of Intelligent Eyes: Application of Artificial Intelligence in Imaging of Abdominopelvic Pathologies in Emergency Radiology.

作者信息

Liu Jeffrey, Varghese Bino, Taravat Farzaneh, Eibschutz Liesl S, Gholamrezanezhad Ali

机构信息

Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.

出版信息

Diagnostics (Basel). 2022 May 30;12(6):1351. doi: 10.3390/diagnostics12061351.

Abstract

Imaging in the emergent setting carries high stakes. With increased demand for dedicated on-site service, emergency radiologists face increasingly large image volumes that require rapid turnaround times. However, novel artificial intelligence (AI) algorithms may assist trauma and emergency radiologists with efficient and accurate medical image analysis, providing an opportunity to augment human decision making, including outcome prediction and treatment planning. While traditional radiology practice involves visual assessment of medical images for detection and characterization of pathologies, AI algorithms can automatically identify subtle disease states and provide quantitative characterization of disease severity based on morphologic image details, such as geometry and fluid flow. Taken together, the benefits provided by implementing AI in radiology have the potential to improve workflow efficiency, engender faster turnaround results for complex cases, and reduce heavy workloads. Although analysis of AI applications within abdominopelvic imaging has primarily focused on oncologic detection, localization, and treatment response, several promising algorithms have been developed for use in the emergency setting. This article aims to establish a general understanding of the AI algorithms used in emergent image-based tasks and to discuss the challenges associated with the implementation of AI into the clinical workflow.

摘要

急诊环境中的影像学检查风险很高。随着对现场专用服务需求的增加,急诊放射科医生面临着越来越多的图像,需要快速周转时间。然而,新型人工智能(AI)算法可能有助于创伤和急诊放射科医生进行高效、准确的医学图像分析,为增强人类决策提供机会,包括结果预测和治疗规划。虽然传统的放射学实践涉及对医学图像进行视觉评估以检测和表征病变,但人工智能算法可以自动识别细微的疾病状态,并根据形态学图像细节(如几何形状和流体流动)提供疾病严重程度的定量表征。综上所述,在放射学中应用人工智能所带来的好处有可能提高工作流程效率,为复杂病例带来更快的周转结果,并减轻繁重的工作量。虽然腹部盆腔影像学中人工智能应用的分析主要集中在肿瘤检测、定位和治疗反应方面,但已经开发了几种有前景的算法用于急诊环境。本文旨在建立对急诊基于图像任务中使用的人工智能算法的总体理解,并讨论将人工智能应用于临床工作流程所面临的挑战。

相似文献

2
Exploring the Role of Artificial Intelligence in an Emergency and Trauma Radiology Department.
Can Assoc Radiol J. 2021 Feb;72(1):167-174. doi: 10.1177/0846537120918338. Epub 2020 Apr 20.
3
Artificial intelligence in emergency radiology: A review of applications and possibilities.
Diagn Interv Imaging. 2023 Jan;104(1):6-10. doi: 10.1016/j.diii.2022.07.005. Epub 2022 Aug 4.
4
Use of artificial intelligence in emergency radiology: An overview of current applications, challenges, and opportunities.
Clin Imaging. 2022 Sep;89:61-67. doi: 10.1016/j.clinimag.2022.05.010. Epub 2022 May 30.
5
Artificial Intelligence in Emergency Radiology: Where Are We Going?
Diagnostics (Basel). 2022 Dec 19;12(12):3223. doi: 10.3390/diagnostics12123223.
6
Is Artificial Intelligence the New Friend for Radiologists? A Review Article.
Cureus. 2020 Oct 24;12(10):e11137. doi: 10.7759/cureus.11137.
7
Artificial Intelligence: A Private Practice Perspective.
J Am Coll Radiol. 2020 Nov;17(11):1398-1404. doi: 10.1016/j.jacr.2020.09.029. Epub 2020 Oct 1.
8
Artificial intelligence in radiology.
Nat Rev Cancer. 2018 Aug;18(8):500-510. doi: 10.1038/s41568-018-0016-5.
9
Artificial intelligence in cardiac radiology.
Radiol Med. 2020 Nov;125(11):1186-1199. doi: 10.1007/s11547-020-01277-w. Epub 2020 Sep 18.
10
AI musculoskeletal clinical applications: how can AI increase my day-to-day efficiency?
Skeletal Radiol. 2022 Feb;51(2):293-304. doi: 10.1007/s00256-021-03876-8. Epub 2021 Aug 3.

引用本文的文献

1
Improving Turnaround Times and Operational Efficiency in Radiology Services: Quality Improvement Study in Oman.
Asian Pac J Cancer Prev. 2025 May 1;26(5):1709-1718. doi: 10.31557/APJCP.2025.26.5.1709.
4
Evolving and Novel Applications of Artificial Intelligence in Abdominal Imaging.
Tomography. 2024 Nov 18;10(11):1814-1831. doi: 10.3390/tomography10110133.
5
Streamlining Acute Abdominal Aortic Dissection Management-An AI-based CT Imaging Workflow.
J Imaging Inform Med. 2024 Dec;37(6):2729-2739. doi: 10.1007/s10278-024-01164-0. Epub 2024 Jun 12.
6
Artificial intelligence in the detection of non-biological materials.
Emerg Radiol. 2024 Jun;31(3):391-403. doi: 10.1007/s10140-024-02222-4. Epub 2024 Mar 26.
7
Deep Learning for Automated Detection and Localization of Traumatic Abdominal Solid Organ Injuries on CT Scans.
J Imaging Inform Med. 2024 Jun;37(3):1113-1123. doi: 10.1007/s10278-024-01038-5. Epub 2024 Feb 16.
8
The American Society of Emergency Radiology (ASER) AI/ML expert panel: inception, mandate, work products, and goals.
Emerg Radiol. 2023 Jun;30(3):279-283. doi: 10.1007/s10140-023-02135-8. Epub 2023 Apr 18.
10
Artificial Intelligence in Emergency Radiology: Where Are We Going?
Diagnostics (Basel). 2022 Dec 19;12(12):3223. doi: 10.3390/diagnostics12123223.

本文引用的文献

2
Automated Screening for Abdominal Aortic Aneurysm in CT Scans under Clinical Conditions Using Deep Learning.
Diagnostics (Basel). 2021 Nov 17;11(11):2131. doi: 10.3390/diagnostics11112131.
3
Predicting clinical outcomes in COVID-19 using radiomics on chest radiographs.
Br J Radiol. 2021 Oct 1;94(1126):20210221. doi: 10.1259/bjr.20210221. Epub 2021 Sep 14.
5
Using Machine Learning to Predict the Diagnosis, Management and Severity of Pediatric Appendicitis.
Front Pediatr. 2021 Apr 29;9:662183. doi: 10.3389/fped.2021.662183. eCollection 2021.
6
Automatic Hip Fracture Identification and Functional Subclassification with Deep Learning.
Radiol Artif Intell. 2020 Mar 25;2(2):e190023. doi: 10.1148/ryai.2020190023. eCollection 2020 Mar.
7
An artificial intelligence deep learning model for identification of small bowel obstruction on plain abdominal radiographs.
Br J Radiol. 2021 Jun 1;94(1122):20201407. doi: 10.1259/bjr.20201407. Epub 2021 Apr 27.
8
A scalable physician-level deep learning algorithm detects universal trauma on pelvic radiographs.
Nat Commun. 2021 Feb 16;12(1):1066. doi: 10.1038/s41467-021-21311-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验