Suppr超能文献

哺乳动物和鸟类中的隐花色素:生物钟还是磁罗盘?

Cryptochromes in Mammals and Birds: Clock or Magnetic Compass?

机构信息

Oakland, California.

Environmental Physiology, Molecular, and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts.

出版信息

Physiology (Bethesda). 2021 May 1;36(3):183-194. doi: 10.1152/physiol.00040.2020.

Abstract

Species throughout the animal kingdom use the Earth's magnetic field (MF) to navigate using either or both of two mechanisms. The first relies on magnetite crystals in tissue where their magnetic moments align with the MF to transduce a signal transmitted to the central nervous system. The second and the subject of this paper involves cryptochrome (CRY) proteins located in cone photoreceptors distributed across the retina, studied most extensively in birds. According to the "Radical Pair Mechanism" (RPM), blue/UV light excites CRY's flavin cofactor (FAD) to generate radical pairs whose singlet-to-triplet interconversion rate is modulated by an external MF. The signaling product of the RPM produces an impression of the field across the retinal surface. In birds, the resulting signal on the optic nerve is transmitted along the thalamofugal pathway to the primary visual cortex, which projects to brain regions concerned with image processing, memory, and executive function. The net result is a bird's orientation to the MF's inclination: its vector angle relative to the Earth's surface. The quality of ambient light (e.g., polarization) provides additional input to the compass. In birds, the Type IV CRY isoform appears pivotal to the compass, given its positioning within retinal cones; a cytosolic location therein indicating no role in the circadian clock; relatively steady diurnal levels (unlike Type II CRY's cycling); and a full complement of FAD (essential for photosensitivity). The evidence indicates that mammalian Type II CRY isoforms play a light-independent role in the cellular molecular clock without a photoreceptive function.

摘要

动物王国中的物种利用地球磁场 (MF) 通过两种机制中的任一种或两种来导航。第一种机制依赖于组织中的磁铁矿晶体,其磁矩与 MF 对齐,以将信号转换为传送到中枢神经系统的信号。第二种机制也是本文的主题,涉及位于视网膜中分布的视锥细胞中的隐花色素 (CRY) 蛋白,在鸟类中研究得最为广泛。根据“自由基对机制”(RPM),蓝光/紫外光激发 CRY 的黄素辅因子(FAD)产生自由基对,其单重态到三重态的转换速率受外部 MF 调制。RPM 的信号产物产生视网膜表面上磁场的印象。在鸟类中,视神经上产生的信号沿着丘脑传出途径传递到初级视觉皮层,该皮层投射到与图像处理、记忆和执行功能相关的大脑区域。最终结果是鸟类对 MF 倾斜度的取向:其相对于地球表面的向量角度。环境光的质量(例如,偏振)为罗盘提供了额外的输入。在鸟类中,IV 型 CRY 同工型似乎对罗盘至关重要,因为它位于视锥细胞内;其细胞溶胶位置表明它在昼夜节律钟中没有作用;相对稳定的昼夜节律水平(与 II 型 CRY 的循环不同);并且具有完整的 FAD 补充(对光敏性至关重要)。证据表明,哺乳动物的 II 型 CRY 同工型在没有光感受器功能的情况下在细胞分子钟中发挥光独立作用。

相似文献

1
Cryptochromes in Mammals and Birds: Clock or Magnetic Compass?
Physiology (Bethesda). 2021 May 1;36(3):183-194. doi: 10.1152/physiol.00040.2020.
2
Analysis of zebrafish cryptochrome2 and 4 expression in UV cone photoreceptors.
Gene Expr Patterns. 2020 Jan;35:119100. doi: 10.1016/j.gep.2020.119100. Epub 2020 Feb 21.
3
The Magnetic Compass of Birds: The Role of Cryptochrome.
Front Physiol. 2021 May 19;12:667000. doi: 10.3389/fphys.2021.667000. eCollection 2021.
4
Zebra finches have a light-dependent magnetic compass similar to migratory birds.
J Exp Biol. 2017 Apr 1;220(Pt 7):1202-1209. doi: 10.1242/jeb.148098.
5
Sensing magnetic directions in birds: radical pair processes involving cryptochrome.
Biosensors (Basel). 2014 Jul 24;4(3):221-42. doi: 10.3390/bios4030221. eCollection 2014 Sep.
6
Cryptochrome mediates light-dependent magnetosensitivity of Drosophila's circadian clock.
PLoS Biol. 2009 Apr 7;7(4):e1000086. doi: 10.1371/journal.pbio.1000086.
9
Light-dependent magnetoreception in birds: the crucial step occurs in the dark.
J R Soc Interface. 2016 May;13(118). doi: 10.1098/rsif.2015.1010.
10
Compass magnetoreception in birds arising from photo-induced radical pairs in rotationally disordered cryptochromes.
J R Soc Interface. 2012 Dec 7;9(77):3329-37. doi: 10.1098/rsif.2012.0374. Epub 2012 Sep 12.

引用本文的文献

1
Quantum theory of a potential biological magnetic field sensor: Radical pair mechanism in flavin adenine dinucleotide biradicals.
Comput Struct Biotechnol J. 2024 Nov 28;26:70-77. doi: 10.1016/j.csbj.2024.11.032. eCollection 2024 Dec.
3
A conserved phenylalanine motif among teleost fish provides insight for improving electromagnetic perception.
Open Biol. 2024 Jul;14(7):240092. doi: 10.1098/rsob.240092. Epub 2024 Jul 24.
4
Molecular Pseudorotation in Phthalocyanines as a Tool for Magnetic Field Control at the Nanoscale.
J Am Chem Soc. 2024 May 29;146(21):14620-14632. doi: 10.1021/jacs.4c01915. Epub 2024 May 14.
6
Cryptochromes in mammals: a magnetoreception misconception?
Front Physiol. 2023 Aug 21;14:1250798. doi: 10.3389/fphys.2023.1250798. eCollection 2023.
7
Isotope Substitution Effects on the Magnetic Compass Properties of Cryptochrome-Based Radical Pairs: A Computational Study.
J Phys Chem B. 2023 Feb 2;127(4):838-845. doi: 10.1021/acs.jpcb.2c05335. Epub 2023 Jan 20.
9
Aschoff's rule on circadian rhythms orchestrated by blue light sensor CRY2 and clock component PRR9.
Nat Commun. 2022 Oct 5;13(1):5869. doi: 10.1038/s41467-022-33568-3.

本文引用的文献

1
Cellular autofluorescence is magnetic field sensitive.
Proc Natl Acad Sci U S A. 2021 Jan 19;118(3). doi: 10.1073/pnas.2018043118.
3
A Putative Mechanism for Magnetoreception by Electromagnetic Induction in the Pigeon Inner Ear.
Curr Biol. 2019 Dec 2;29(23):4052-4059.e4. doi: 10.1016/j.cub.2019.09.048. Epub 2019 Nov 14.
4
Chemical and structural analysis of a photoactive vertebrate cryptochrome from pigeon.
Proc Natl Acad Sci U S A. 2019 Sep 24;116(39):19449-19457. doi: 10.1073/pnas.1907875116. Epub 2019 Sep 4.
5
Magnetoreception in birds.
J R Soc Interface. 2019 Sep 27;16(158):20190295. doi: 10.1098/rsif.2019.0295. Epub 2019 Sep 4.
6
Sensory Processing at Ribbon Synapses in the Retina and the Cochlea.
Physiol Rev. 2020 Jan 1;100(1):103-144. doi: 10.1152/physrev.00026.2018. Epub 2019 Aug 2.
7
Transduction of the Geomagnetic Field as Evidenced from alpha-Band Activity in the Human Brain.
eNeuro. 2019 Apr 26;6(2). doi: 10.1523/ENEURO.0483-18.2019. Print 2019 Mar/Apr.
8
Blue light-dependent human magnetoreception in geomagnetic food orientation.
PLoS One. 2019 Feb 14;14(2):e0211826. doi: 10.1371/journal.pone.0211826. eCollection 2019.
9
Comparative properties and functions of type 2 and type 4 pigeon cryptochromes.
Cell Mol Life Sci. 2018 Dec;75(24):4629-4641. doi: 10.1007/s00018-018-2920-y. Epub 2018 Sep 27.
10
Absorption Spectra of FAD Embedded in Cryptochromes.
J Phys Chem Lett. 2018 Jul 5;9(13):3618-3623. doi: 10.1021/acs.jpclett.8b01528. Epub 2018 Jun 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验