Suppr超能文献

由动态面部表情引发的事件相关脑电振荡反应。

Event-related EEG oscillatory responses elicited by dynamic facial expression.

机构信息

Program of Electroneurophysiology, Vocational School, Istanbul Medipol University, Istanbul, Turkey.

Program of Neuroscience Ph.D, Graduate School of Health Sciences, Istanbul Medipol University, Istanbul, Turkey.

出版信息

Biomed Eng Online. 2021 Apr 27;20(1):41. doi: 10.1186/s12938-021-00882-8.

Abstract

BACKGROUND

Recognition of facial expressions (FEs) plays a crucial role in social interactions. Most studies on FE recognition use static (image) stimuli, even though real-life FEs are dynamic. FE processing is complex and multifaceted, and its neural correlates remain unclear. Transitioning from static to dynamic FE stimuli might help disentangle the neural oscillatory mechanisms underlying face processing and recognition of emotion expression. To our knowledge, we here present the first time-frequency exploration of oscillatory brain mechanisms underlying the processing of dynamic FEs.

RESULTS

Videos of joyful, fearful, and neutral dynamic facial expressions were presented to 18 included healthy young adults. We analyzed event-related activity in electroencephalography (EEG) data, focusing on the delta, theta, and alpha-band oscillations. Since the videos involved a transition from neutral to emotional expressions (onset around 500 ms), we identified time windows that might correspond to face perception initially (time window 1; first TW), and emotion expression recognition subsequently (around 1000 ms; second TW). First TW showed increased power and phase-locking values for all frequency bands. In the first TW, power and phase-locking values were higher in the delta and theta bands for emotional FEs as compared to neutral FEs, thus potentially serving as a marker for emotion recognition in dynamic face processing.

CONCLUSIONS

Our time-frequency exploration revealed consistent oscillatory responses to complex, dynamic, ecologically meaningful FE stimuli. We conclude that while dynamic FE processing involves complex network dynamics, dynamic FEs were successfully used to reveal temporally separate oscillation responses related to face processing and subsequently emotion expression recognition.

摘要

背景

面部表情(FE)的识别在社交互动中起着至关重要的作用。尽管真实的 FE 是动态的,但大多数关于 FE 识别的研究都使用静态(图像)刺激。FE 处理是复杂和多方面的,其神经相关性仍不清楚。从静态到动态 FE 刺激的转变可能有助于理清面部处理和情绪表达识别的神经振荡机制。据我们所知,我们在这里首次展示了用于处理动态 FE 的神经振荡机制的时频探索。

结果

向 18 名健康年轻成年人呈现了快乐的、恐惧的和中性的动态面部表情的视频。我们分析了脑电图(EEG)数据中的事件相关活动,重点关注 delta、theta 和 alpha 波段的振荡。由于视频涉及从中性到情绪表达的过渡(约 500 毫秒时开始),我们确定了可能最初对应于面部感知的时间窗口(第一时间窗口;第一 TW),以及随后对应于情绪表达识别的时间窗口(约 1000 毫秒;第二 TW)。第一 TW 显示所有频段的功率和相位锁定值增加。在第一 TW 中,与中性 FE 相比,情绪 FE 的 delta 和 theta 频段的功率和相位锁定值更高,因此可能是动态面部处理中情绪识别的标志物。

结论

我们的时频探索揭示了对复杂、动态、生态有意义的 FE 刺激的一致振荡反应。我们的结论是,虽然动态 FE 处理涉及复杂的网络动态,但动态 FE 成功地用于揭示与面部处理相关的时间上分开的振荡反应,随后是情绪表达识别。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c683/8077950/9952259ee6d3/12938_2021_882_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验