Suppr超能文献

利用苹果手表和Fitbit数据预测躺卧、坐立、行走和跑步状态。

Predicting lying, sitting, walking and running using Apple Watch and Fitbit data.

作者信息

Fuller Daniel, Anaraki Javad Rahimipour, Simango Bongai, Rayner Machel, Dorani Faramarz, Bozorgi Arastoo, Luan Hui, A Basset Fabien

机构信息

School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland, Canada.

Department of Computer Science, Faculty of Science, Memorial University of Newfoundland, St. John's, Newfoundland, Canada.

出版信息

BMJ Open Sport Exerc Med. 2021 Apr 8;7(1):e001004. doi: 10.1136/bmjsem-2020-001004. eCollection 2021.

Abstract

OBJECTIVES

This study's objective was to examine whether commercial wearable devices could accurately predict lying, sitting and varying intensities of walking and running.

METHODS

We recruited a convenience sample of 49 participants (23 men and 26 women) to wear three devices, an Apple Watch Series 2, a Fitbit Charge HR2 and iPhone 6S. Participants completed a 65 min protocol consisting of 40 min of total treadmill time and 25 min of sitting or lying time. The study's outcome variables were six movement types: lying, sitting, walking self-paced and walking/running at 3 metabolic equivalents of task (METs), 5 METs and 7 METs. All analyses were conducted at the minute level with heart rate, steps, distance and calories from Apple Watch and Fitbit. These included three different machine learning models: support vector machines, Random Forest and Rotation forest.

RESULTS

Our dataset included 3656 and 2608 min of Apple Watch and Fitbit data, respectively. Rotation Forest models had the highest classification accuracies for Apple Watch at 82.6%, and Random Forest models had the highest accuracy for Fitbit at 90.8%. Classification accuracies for Apple Watch data ranged from 72.6% for sitting to 89.0% for 7 METs. For Fitbit, accuracies varied between 86.2% for sitting to 92.6% for 7 METs.

CONCLUSION

This preliminary study demonstrated that data from commercial wearable devices could predict movement types with reasonable accuracy. More research is needed, but these methods are a proof of concept for movement type classification at the population level using commercial wearable device data.

摘要

目的

本研究的目的是检验商用可穿戴设备能否准确预测躺、坐以及不同强度的行走和跑步。

方法

我们招募了49名参与者(23名男性和26名女性)组成便利样本,让他们佩戴三款设备,即苹果手表Series 2、Fitbit Charge HR2和iPhone 6S。参与者完成了一个65分钟的方案,包括40分钟的跑步机总时长以及25分钟的坐或躺时间。该研究的结果变量为六种运动类型:躺、坐、自定步速行走以及以3个代谢当量(METs)、5个METs和7个METs进行行走/跑步。所有分析均在每分钟的水平上进行,数据来自苹果手表和Fitbit的心率、步数、距离和卡路里。这些分析包括三种不同的机器学习模型:支持向量机、随机森林和旋转森林。

结果

我们的数据集分别包含苹果手表3656分钟和Fitbit 2608分钟的数据。旋转森林模型对苹果手表的分类准确率最高,为82.6%,随机森林模型对Fitbit的准确率最高,为90.8%。苹果手表数据的分类准确率范围从坐时的72.6%到7个METs时的89.0%。对于Fitbit,准确率在坐时的86.2%到7个METs时的92.6%之间变化。

结论

这项初步研究表明,商用可穿戴设备的数据能够以合理的准确率预测运动类型。还需要更多的研究,但这些方法是使用商用可穿戴设备数据在人群水平上进行运动类型分类的概念验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/602c/8039266/0b9519517a8e/bmjsem-2020-001004f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验