Suppr超能文献

矩阵耗散和化学生物机械信号之间的递归反馈驱动癌细胞侵袭伪足的振荡生长。

Recursive feedback between matrix dissipation and chemo-mechanical signaling drives oscillatory growth of cancer cell invadopodia.

机构信息

Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104, USA.

Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.

出版信息

Cell Rep. 2021 Apr 27;35(4):109047. doi: 10.1016/j.celrep.2021.109047.

Abstract

Most extracellular matrices (ECMs) are known to be dissipative, exhibiting viscoelastic and often plastic behaviors. However, the influence of dissipation, in particular mechanical plasticity in 3D confining microenvironments, on cell motility is not clear. In this study, we develop a chemo-mechanical model for dynamics of invadopodia, the protrusive structures that cancer cells use to facilitate invasion, by considering myosin recruitment, actin polymerization, matrix deformation, and mechano-sensitive signaling pathways. We demonstrate that matrix dissipation facilitates invadopodia growth by softening ECMs over repeated cycles, during which plastic deformation accumulates via cyclic ratcheting. Our model reveals that distinct protrusion patterns, oscillatory or monotonic, emerge from the interplay of timescales for polymerization-associated extension and myosin recruitment dynamics. Our model predicts the changes in invadopodia dynamics upon inhibition of myosin, adhesions, and the Rho-Rho-associated kinase (ROCK) pathway. Altogether, our work highlights the role of matrix plasticity in invadopodia dynamics and can help design dissipative biomaterials to modulate cancer cell motility.

摘要

大多数细胞外基质(ECM)已知具有耗散性,表现出粘弹性,并且通常具有塑性。然而,耗散(特别是在 3D 约束微环境中的机械塑性)对细胞迁移的影响尚不清楚。在这项研究中,我们通过考虑肌球蛋白募集、肌动蛋白聚合、基质变形和机械敏感信号通路,为侵袭足(癌细胞用来促进侵袭的突起结构)的动力学开发了一个化学机械模型。我们证明,通过在重复循环中软化 ECM,基质耗散通过循环棘轮作用使塑性变形累积,从而促进侵袭足的生长。我们的模型表明,不同的突起模式,即振荡或单调,是由聚合相关延伸和肌球蛋白募集动力学的时间尺度相互作用产生的。我们的模型预测了肌球蛋白、黏附物和 Rho- Rho 相关激酶(ROCK)途径抑制后侵袭足动力学的变化。总之,我们的工作强调了基质塑性在侵袭足动力学中的作用,并可以帮助设计耗散生物材料来调节癌细胞的迁移能力。

相似文献

4
ECM Cross-Linking Regulates Invadopodia Dynamics.ECM 交联调节侵袭伪足动力学。
Biophys J. 2018 Mar 27;114(6):1455-1466. doi: 10.1016/j.bpj.2018.01.027.
8
Crosstalk between invadopodia and the extracellular matrix.侵袭伪足与细胞外基质的串扰。
Eur J Cell Biol. 2020 Sep;99(7):151122. doi: 10.1016/j.ejcb.2020.151122. Epub 2020 Sep 15.

引用本文的文献

5
Cell-extracellular matrix mechanotransduction in 3D.三维细胞-细胞外基质力学转导。
Nat Rev Mol Cell Biol. 2023 Jul;24(7):495-516. doi: 10.1038/s41580-023-00583-1. Epub 2023 Feb 27.
6
Predicting YAP/TAZ nuclear translocation in response to ECM mechanosensing.预测 YAP/TAZ 核易位以响应 ECM 机械感知。
Biophys J. 2023 Jan 3;122(1):43-53. doi: 10.1016/j.bpj.2022.11.2943. Epub 2022 Nov 30.
8
Cell-3D matrix interactions: recent advances and opportunities.细胞-三维基质相互作用:最新进展与机遇。
Trends Cell Biol. 2022 Oct;32(10):883-895. doi: 10.1016/j.tcb.2022.03.002. Epub 2022 Apr 8.
9
Lose the stress: Viscoelastic materials for cell engineering.摆脱压力:用于细胞工程的黏弹性材料。
Acta Biomater. 2023 Jun;163:146-157. doi: 10.1016/j.actbio.2022.03.058. Epub 2022 Apr 8.

本文引用的文献

1
Impact of crosslink heterogeneity on extracellular matrix mechanics and remodeling.交联异质性对细胞外基质力学及重塑的影响。
Comput Struct Biotechnol J. 2020 Dec 1;18:3969-3976. doi: 10.1016/j.csbj.2020.11.038. eCollection 2020.
2
Extracellular matrix plasticity as a driver of cell spreading.细胞外基质可塑性作为细胞铺展的驱动力。
Proc Natl Acad Sci U S A. 2020 Oct 20;117(42):25999-26007. doi: 10.1073/pnas.2008801117. Epub 2020 Oct 5.
3
Effects of extracellular matrix viscoelasticity on cellular behaviour.细胞外基质粘弹性对细胞行为的影响。
Nature. 2020 Aug;584(7822):535-546. doi: 10.1038/s41586-020-2612-2. Epub 2020 Aug 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验