Key Laboratory of Data Science and Intelligence Education, Ministry of Education, Hainan Normal University, Haikou, 571126, China.
College of Mathematics and Statistics, Hainan Normal University, Haikou, 571126, China.
Interdiscip Sci. 2024 Sep;16(3):755-768. doi: 10.1007/s12539-024-00629-8. Epub 2024 Apr 29.
Autism spectrum disorder (ASD) is a complex, severe disorder related to brain development. It impairs patient language communication and social behaviors. In recent years, ASD researches have focused on a single-modal neuroimaging data, neglecting the complementarity between multi-modal data. This omission may lead to poor classification. Therefore, it is important to study multi-modal data of ASD for revealing its pathogenesis. Furthermore, recurrent neural network (RNN) and gated recurrent unit (GRU) are effective for sequence data processing. In this paper, we introduce a novel framework for a Multi-Kernel Learning Fusion algorithm based on RNN and GRU (MKLF-RAG). The framework utilizes RNN and GRU to provide feature selection for data of different modalities. Then these features are fused by MKLF algorithm to detect the pathological mechanisms of ASD and extract the most relevant the Regions of Interest (ROIs) for the disease. The MKLF-RAG proposed in this paper has been tested in a variety of experiments with the Autism Brain Imaging Data Exchange (ABIDE) database. Experimental findings indicate that our framework notably enhances the classification accuracy for ASD. Compared with other methods, MKLF-RAG demonstrates superior efficacy across multiple evaluation metrics and could provide valuable insights into the early diagnosis of ASD.
自闭症谱系障碍(ASD)是一种与大脑发育相关的复杂、严重的障碍。它损害了患者的语言交流和社交行为。近年来,ASD 的研究集中在单一模式的神经影像学数据上,忽略了多模态数据之间的互补性。这种遗漏可能导致分类效果不佳。因此,研究 ASD 的多模态数据对于揭示其发病机制非常重要。此外,递归神经网络(RNN)和门控循环单元(GRU)对于序列数据处理非常有效。在本文中,我们引入了一种基于 RNN 和 GRU 的多内核学习融合算法(MKLF-RAG)的新框架。该框架利用 RNN 和 GRU 为不同模态的数据提供特征选择。然后,这些特征通过 MKLF 算法融合,以检测 ASD 的病理机制,并提取与疾病最相关的感兴趣区域(ROIs)。本文提出的 MKLF-RAG 已在 ABIDE 数据库的多种实验中进行了测试。实验结果表明,我们的框架显著提高了 ASD 的分类准确性。与其他方法相比,MKLF-RAG 在多个评估指标上均表现出更好的效果,可为 ASD 的早期诊断提供有价值的见解。