Suppr超能文献

使用深度神经网络的高分辨率单次相移干涉显微镜用于生物样本的定量相位成像。

High-resolution single-shot phase-shifting interference microscopy using deep neural network for quantitative phase imaging of biological samples.

机构信息

Bio-photonics and Green-photonics Laboratory, Department of Physics, Indian Institute of Technology Delhi, New Delhi, India.

出版信息

J Biophotonics. 2021 Jul;14(7):e202000473. doi: 10.1002/jbio.202000473. Epub 2021 May 7.

Abstract

White light phase-shifting interference microscopy (WL-PSIM) is a prominent technique for high-resolution quantitative phase imaging (QPI) of industrial and biological specimens. However, multiple interferograms with accurate phase-shifts are essentially required in WL-PSIM for measuring the accurate phase of the object. Here, we present single-shot phase-shifting interferometric techniques for accurate phase measurement using filtered white light (520±36 nm) phase-shifting interference microscopy (F-WL-PSIM) and deep neural network (DNN). The methods are incorporated by training the DNN to generate (a) four phase-shifted frames and (b) direct phase from a single interferogram. The training of network is performed on two different samples i.e., optical waveguide and MG63 osteosarcoma cells. Further, performance of F-WL-PSIM+DNN framework is validated by comparing the phase map extracted from network generated and experimentally recorded interferograms. The current approach can further strengthen QPI techniques for high-resolution phase recovery using a single frame for different biomedical applications.

摘要

白光相移干涉显微镜(WL-PSIM)是一种用于工业和生物样本高分辨率定量相位成像(QPI)的重要技术。然而,在 WL-PSIM 中,需要多个具有准确相移的干涉图来测量物体的准确相位。在这里,我们提出了使用滤波白光(520±36nm)相移干涉显微镜(F-WL-PSIM)和深度神经网络(DNN)的单次相移干涉技术,用于准确的相位测量。该方法通过训练 DNN 生成(a)四个相移帧和(b)从单个干涉图直接生成相位来实现。网络的训练是在两个不同的样本上进行的,即光波导和 MG63 骨肉瘤细胞。此外,通过比较从网络生成的相位图和实验记录的干涉图,验证了 F-WL-PSIM+DNN 框架的性能。该方法可以进一步加强 QPI 技术,使用单个帧进行不同的生物医学应用的高分辨率相位恢复。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验