Mustonen Henrik, Isosalo Antti, Nortunen Minna, Nevalainen Mika, Nieminen Miika T, Huhta Heikki
Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.
Research Unit of Translational Medicine, Oulu University Hospital, Oulu, Finland.
PLoS One. 2024 Dec 3;19(12):e0313126. doi: 10.1371/journal.pone.0313126. eCollection 2024.
The utilization of artificial intelligence (AI) is expanding significantly within medical research and, to some extent, in clinical practice. Deep learning (DL) applications, which use large convolutional neural networks (CNN), hold considerable potential, especially in optimizing radiological evaluations. However, training DL algorithms to clinical standards requires extensive datasets, and their processing is labor-intensive. In this study, we developed an annotation tool named DLLabelsCT that utilizes CNN models to accelerate the image analysis process. To validate DLLabelsCT, we trained a CNN model with a ResNet34 encoder and a UNet decoder to segment the pancreas on an open-access dataset and used the DL model to assist in annotating a local dataset, which was further used to refine the model. DLLabelsCT was also tested on two external testing datasets. The tool accelerates annotation by 3.4 times compared to a completely manual annotation method. Out of 3,715 CT scan slices in the testing datasets, 50% did not require editing when reviewing the segmentations made by the ResNet34-UNet model, and the mean and standard deviation of the Dice similarity coefficient was 0.82±0.24. DLLabelsCT is highly accurate and significantly saves time and resources. Furthermore, it can be easily modified to support other deep learning models for other organs, making it an efficient tool for future research involving larger datasets.
人工智能(AI)在医学研究中以及在一定程度上在临床实践中的应用正在显著扩展。使用大型卷积神经网络(CNN)的深度学习(DL)应用具有相当大的潜力,特别是在优化放射学评估方面。然而,将DL算法训练到临床标准需要大量数据集,并且其处理工作强度大。在本研究中,我们开发了一种名为DLLabelsCT的注释工具,该工具利用CNN模型来加速图像分析过程。为了验证DLLabelsCT,我们使用带有ResNet34编码器和UNet解码器的CNN模型在一个开放获取数据集上对胰腺进行分割,并使用该DL模型协助注释一个本地数据集,该本地数据集进一步用于优化模型。DLLabelsCT还在两个外部测试数据集上进行了测试。与完全手动注释方法相比,该工具将注释速度提高了3.4倍。在测试数据集中的3715个CT扫描切片中,在查看ResNet34 - UNet模型生成的分割结果时,50%的切片不需要编辑,Dice相似系数的均值和标准差为0.82±0.24。DLLabelsCT非常准确,显著节省了时间和资源。此外,它可以很容易地修改以支持针对其他器官的其他深度学习模型,使其成为未来涉及更大数据集研究的高效工具。