Suppr超能文献

CricShotClassify:一种使用卷积神经网络和门控循环单元对板球视频中的击球进行分类的方法。

CricShotClassify: An Approach to Classifying Batting Shots from Cricket Videos Using a Convolutional Neural Network and Gated Recurrent Unit.

机构信息

Department of Computer Science & Engineering, Chittagong University of Engineering & Technology (CUET), Chattogram 4349, Bangladesh.

Department of Computer Science & Engineering, Premier University, Chattogram 4000, Bangladesh.

出版信息

Sensors (Basel). 2021 Apr 18;21(8):2846. doi: 10.3390/s21082846.

Abstract

Recognizing the sport of cricket on the basis of different batting shots can be a significant part of context-based advertisement to users watching cricket, generating sensor-based commentary systems and coaching assistants. Due to the similarity between different batting shots, manual feature extraction from video frames is tedious. This paper proposes a hybrid deep-neural-network architecture for classifying 10 different cricket batting shots from offline videos. We composed a novel dataset, CricShot10, comprising uneven lengths of batting shots and unpredictable illumination conditions. Impelled by the enormous success of deep-learning models, we utilized a convolutional neural network (CNN) for automatic feature extraction, and a gated recurrent unit (GRU) to deal with long temporal dependency. Initially, conventional CNN and dilated CNN-based architectures were developed. Following that, different transfer-learning models were investigated-namely, VGG16, InceptionV3, Xception, and DenseNet169-which freeze all the layers. Experiment results demonstrated that the VGG16-GRU model outperformed the other models by attaining 86% accuracy. We further explored VGG16 and two models were developed, one by freezing all but the final 4 VGG16 layers, and another by freezing all but the final 8 VGG16 layers. On our CricShot10 dataset, these two models were 93% accurate. These results verify the effectiveness of our proposed architecture compared with other methods in terms of accuracy.

摘要

基于不同击球动作识别板球运动可以成为向观看板球比赛的用户提供基于上下文的广告的重要组成部分,从而生成基于传感器的评论系统和教练助手。由于不同击球动作之间的相似性,从视频帧中手动提取特征非常繁琐。本文提出了一种混合深度神经网络架构,用于从离线视频中对 10 种不同的板球击球动作进行分类。我们组成了一个新的数据集 CricShot10,其中包含不均匀长度的击球动作和不可预测的照明条件。受深度学习模型巨大成功的推动,我们利用卷积神经网络 (CNN) 进行自动特征提取,并使用门控循环单元 (GRU) 处理长时依赖关系。最初,开发了传统的 CNN 和扩张 CNN 架构。之后,研究了不同的迁移学习模型,即 VGG16、InceptionV3、Xception 和 DenseNet169,这些模型冻结了所有层。实验结果表明,VGG16-GRU 模型的准确率达到 86%,优于其他模型。我们进一步探索了 VGG16,并开发了两个模型,一个模型冻结了除最后 4 个 VGG16 层之外的所有层,另一个模型冻结了除最后 8 个 VGG16 层之外的所有层。在我们的 CricShot10 数据集上,这两个模型的准确率达到 93%。这些结果验证了与其他方法相比,我们提出的架构在准确性方面的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验