Suppr超能文献

通过融合短时傅里叶变换(STFT)和梅尔频率倒谱系数(MFCC)特征的深度可分离卷积神经网络(CNN)模型对肺音进行高效分类

Efficiently Classifying Lung Sounds through Depthwise Separable CNN Models with Fused STFT and MFCC Features.

作者信息

Jung Shing-Yun, Liao Chia-Hung, Wu Yu-Sheng, Yuan Shyan-Ming, Sun Chuen-Tsai

机构信息

Department of Computer Science, National Chiao Tung University, Hsinchu 300, Taiwan.

Department of Computer Science, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan.

出版信息

Diagnostics (Basel). 2021 Apr 20;11(4):732. doi: 10.3390/diagnostics11040732.

Abstract

Lung sounds remain vital in clinical diagnosis as they reveal associations with pulmonary pathologies. With COVID-19 spreading across the world, it has become more pressing for medical professionals to better leverage artificial intelligence for faster and more accurate lung auscultation. This research aims to propose a feature engineering process that extracts the dedicated features for the depthwise separable convolution neural network (DS-CNN) to classify lung sounds accurately and efficiently. We extracted a total of three features for the shrunk DS-CNN model: the short-time Fourier-transformed (STFT) feature, the Mel-frequency cepstrum coefficient (MFCC) feature, and the fused features of these two. We observed that while DS-CNN models trained on either the STFT or the MFCC feature achieved an accuracy of 82.27% and 73.02%, respectively, fusing both features led to a higher accuracy of 85.74%. In addition, our method achieved 16 times higher inference speed on an edge device and only 0.45% less accuracy than RespireNet. This finding indicates that the fusion of the STFT and MFCC features and DS-CNN would be a model design for lightweight edge devices to achieve accurate AI-aided detection of lung diseases.

摘要

肺部声音在临床诊断中仍然至关重要,因为它们揭示了与肺部疾病的关联。随着新冠疫情在全球蔓延,医学专业人员更迫切需要更好地利用人工智能来实现更快、更准确的肺部听诊。本研究旨在提出一种特征工程流程,为深度可分离卷积神经网络(DS-CNN)提取专用特征,以准确、高效地对肺部声音进行分类。我们为精简后的DS-CNN模型总共提取了三种特征:短时傅里叶变换(STFT)特征、梅尔频率倒谱系数(MFCC)特征以及这两者的融合特征。我们观察到,虽然在STFT特征或MFCC特征上训练的DS-CNN模型的准确率分别达到了82.27%和73.02%,但融合这两种特征可使准确率提高到85.74%。此外,我们的方法在边缘设备上的推理速度比RespireNet快16倍,且准确率仅低0.45%。这一发现表明,STFT和MFCC特征与DS-CNN的融合将是一种用于轻量级边缘设备的模型设计,以实现准确的人工智能辅助肺部疾病检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c23d/8074359/0eb662eba0d9/diagnostics-11-00732-g001.jpg

相似文献

1
Efficiently Classifying Lung Sounds through Depthwise Separable CNN Models with Fused STFT and MFCC Features.
Diagnostics (Basel). 2021 Apr 20;11(4):732. doi: 10.3390/diagnostics11040732.
3
A multi-scale gated multi-head attention depthwise separable CNN model for recognizing COVID-19.
Sci Rep. 2021 Sep 10;11(1):18048. doi: 10.1038/s41598-021-97428-8.
4
COVID-19 disease diagnosis with light-weight CNN using modified MFCC and enhanced GFCC from human respiratory sounds.
Eur Phys J Spec Top. 2022;231(18-20):3329-3346. doi: 10.1140/epjs/s11734-022-00432-w. Epub 2022 Jan 24.
5
MFCC-CNN: A patient-independent seizure prediction model.
Neurol Sci. 2024 Dec;45(12):5897-5908. doi: 10.1007/s10072-024-07718-y. Epub 2024 Aug 9.
6
Heart sound classification based on improved MFCC features and convolutional recurrent neural networks.
Neural Netw. 2020 Oct;130:22-32. doi: 10.1016/j.neunet.2020.06.015. Epub 2020 Jun 23.
7
Heart Murmur Classification Using a Capsule Neural Network.
Bioengineering (Basel). 2023 Oct 24;10(11):1237. doi: 10.3390/bioengineering10111237.
8
On effective cognitive state classification using novel feature extraction strategies.
Cogn Neurodyn. 2021 Dec;15(6):1125-1155. doi: 10.1007/s11571-021-09688-9. Epub 2021 Jun 22.
9
Lung sounds classification using convolutional neural networks.
Artif Intell Med. 2018 Jun;88:58-69. doi: 10.1016/j.artmed.2018.04.008. Epub 2018 May 1.
10
CodnNet: A lightweight CNN architecture for detection of COVID-19 infection.
Appl Soft Comput. 2022 Nov;130:109656. doi: 10.1016/j.asoc.2022.109656. Epub 2022 Sep 24.

引用本文的文献

1
2
Influence of Gaussian White Noise on Medical Students' Capacity to Accurately Identify Pulmonary Sounds.
Noise Health. 2024;26(123):474-482. doi: 10.4103/nah.nah_98_24. Epub 2024 Dec 30.
4
Graph features based classification of bronchial and pleural rub sound signals: the potential of complex network unwrapped.
Phys Eng Sci Med. 2024 Dec;47(4):1447-1459. doi: 10.1007/s13246-024-01455-4. Epub 2024 Jul 1.
5
Attention Feature Fusion Network via Knowledge Propagation for Automated Respiratory Sound Classification.
IEEE Open J Eng Med Biol. 2024 May 16;5:383-392. doi: 10.1109/OJEMB.2024.3402139. eCollection 2024.
6
Machine Learning for Automated Classification of Abnormal Lung Sounds Obtained from Public Databases: A Systematic Review.
Bioengineering (Basel). 2023 Oct 2;10(10):1155. doi: 10.3390/bioengineering10101155.
7
Evolution of the Stethoscope: Advances with the Adoption of Machine Learning and Development of Wearable Devices.
Tuberc Respir Dis (Seoul). 2023 Oct;86(4):251-263. doi: 10.4046/trd.2023.0065. Epub 2023 Aug 18.
8
: Hybrid interpretable strategies with ensemble techniques for respiratory sound classification.
Heliyon. 2023 Jul 22;9(8):e18466. doi: 10.1016/j.heliyon.2023.e18466. eCollection 2023 Aug.

本文引用的文献

1
RespireNet: A Deep Neural Network for Accurately Detecting Abnormal Lung Sounds in Limited Data Setting.
Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:527-530. doi: 10.1109/EMBC46164.2021.9630091.
4
Breathing Sound Segmentation and Detection Using Transfer Learning Techniques on an Attention-Based Encoder-Decoder Architecture.
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:754-759. doi: 10.1109/EMBC44109.2020.9176226.
5
Persistent Value of the Stethoscope in the Age of COVID-19.
Am J Med. 2020 Oct;133(10):1143-1150. doi: 10.1016/j.amjmed.2020.05.018. Epub 2020 Jun 19.
6
Deep Neural Network for Respiratory Sound Classification in Wearable Devices Enabled by Patient Specific Model Tuning.
IEEE Trans Biomed Circuits Syst. 2020 Jun;14(3):535-544. doi: 10.1109/TBCAS.2020.2981172. Epub 2020 Mar 18.
8
Convolutional neural networks based efficient approach for classification of lung diseases.
Health Inf Sci Syst. 2019 Dec 23;8(1):4. doi: 10.1007/s13755-019-0091-3. eCollection 2020 Dec.
9
Smartphone Based Human Breath Analysis from Respiratory Sounds.
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:445-448. doi: 10.1109/EMBC.2018.8512452.
10
Lung sounds classification using convolutional neural networks.
Artif Intell Med. 2018 Jun;88:58-69. doi: 10.1016/j.artmed.2018.04.008. Epub 2018 May 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验