Suppr超能文献

基于参数优化智能算法的智慧树大规模在线开放课程平台的大学生满意度研究。

Study on the university students' satisfaction of the wisdom tree massive open online course platform based on parameter optimization intelligent algorithm.

机构信息

School of Big Data, Fuzhou University of International Studies and Trade, China.

School of Intelligent Construction, Fuzhou University of International Studies and Trade, China.

出版信息

Sci Prog. 2021 Sep;104(3_suppl):368504211054256. doi: 10.1177/00368504211054256.

Abstract

INTRODUCTION

Curriculum learning through the wisdom tree massive open online course platform not only gets rid of the limitations of specialty, school and region, eliminates the limitations of time and space in traditional teaching, but also effectively solves the problem of educational equity.

OBJECTIVES

This paper proposes an intelligent algorithm combining decision tree, support vector machine, and simulated annealing to obtain the best classification accuracy and decision rules for university students' satisfaction with the wisdom tree massive open online course platform.

METHODS

This study takes the university students in Fuzhou city information management department as the survey object, and adopts the electronic questionnaire survey method. A total of 1136 formal questionnaires were responded, and 1028 valid questionnaires were obtained after data cleaning and deleting invalid questionnaires (the effective rate was 90.49%). In this paper, the reliability and validity of the questionnaire were tested by IBM SPSS-20.0 software, and six explanatory variables including function, achievement, exercise, quality, richness, and interaction were obtained by principal component analysis. Then, the questionnaire data is converted to CSV (comma separated values) format for analysis. This paper proposes an intelligent algorithm combining decision tree, support vector machine, and simulated annealing to obtain the best classification accuracy and decision rules for university students' satisfaction with the wisdom tree massive open online course platform. In this paper, the proposed algorithm is compared with decision tree, random forest, k-nearest neighbor, and support vector machine to verify its performance.

RESULTS

The experimental results show that training set classification accuracy of decision tree, random forest, k-nearest neighbor, only support vector machine and the proposed algorithm (simulated annealing + support vector machine) are 92.21%, 96.10%, 95.67%, 97.29%, and 99.58%, respectively.

CONCLUSION

The proposed algorithm simulated annealing + support vector machine does increase the classification accuracy. At the same time, the 11 decision rules generated by simulated annealing + decision tree can provide useful information for decision makers.

摘要

简介

通过智慧树大规模在线开放课程平台进行课程学习,不仅摆脱了专业、学校和地区的限制,消除了传统教学中时间和空间的限制,而且有效解决了教育公平问题。

目的

本文提出了一种结合决策树、支持向量机和模拟退火的智能算法,以获得大学生对智慧树大规模在线开放课程平台满意度的最佳分类精度和决策规则。

方法

本研究以福州市信息管理系大学生为调查对象,采用电子问卷调查法。共收到 1136 份正式问卷,经数据清理和剔除无效问卷后,共获得 1028 份有效问卷(有效率为 90.49%)。本文采用 IBM SPSS-20.0 软件对问卷的可靠性和有效性进行检验,并通过主成分分析得到功能、成绩、锻炼、质量、丰富度和交互六个解释变量。然后,将问卷数据转换为 CSV(逗号分隔值)格式进行分析。本文提出了一种结合决策树、支持向量机和模拟退火的智能算法,以获得大学生对智慧树大规模在线开放课程平台满意度的最佳分类精度和决策规则。本文将所提出的算法与决策树、随机森林、k-最近邻和支持向量机进行了比较,以验证其性能。

结果

实验结果表明,决策树、随机森林、k-最近邻、仅支持向量机和本文提出的算法(模拟退火+支持向量机)的训练集分类准确率分别为 92.21%、96.10%、95.67%、97.29%和 99.58%。

结论

所提出的模拟退火+支持向量机算法确实提高了分类精度。同时,模拟退火+决策树生成的 11 条决策规则可以为决策者提供有用的信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e524/10358608/b13374ed73a6/10.1177_00368504211054256-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验