Ogura Hiroto, Kaneda Masahiko, Nakanishi Yusuke, Nonoguchi Yoshiyuki, Pu Jiang, Ohfuchi Mari, Irisawa Toshifumi, Lim Hong En, Endo Takahiko, Yanagi Kazuhiro, Takenobu Taishi, Miyata Yasumitsu
Department of Physics, Tokyo Metropolitan University, Hachioji, 192-0397, Japan.
Faculty of Materials Science and Engineering, Kyoto Institute of Technology, Kyoto 606-8585, Japan.
Nanoscale. 2021 May 20;13(19):8784-8789. doi: 10.1039/d1nr01279g.
To maximize the potential of transition-metal dichalcogenides (TMDCs) in device applications, the development of a sophisticated technique for stable and highly efficient carrier doping is critical. Here, we report the efficient n-type doping of monolayer MoS2 using KOH/benzo-18-crown-6, resulting in a doped TMDC that is air-stable. MoS2 field-effect transistors show an increase in on-current of three orders of magnitude and degenerate the n-type behaviour with high air-stability for ∼1 month as the dopant concentration increases. Transport measurements indicate a high electron density of 3.4 × 1013 cm-2 and metallic-type temperature dependence for highly doped MoS2. First-principles calculations support electron doping via surface charge transfer from the K/benzo-18-crown-6 complex to monolayer MoS2. Patterned doping is demonstrated to improve the contact resistance in MoS2-based devices.
为了在器件应用中充分发挥过渡金属二硫属化物(TMDCs)的潜力,开发一种用于稳定且高效载流子掺杂的精密技术至关重要。在此,我们报告了使用KOH/苯并 - 18 - 冠 - 6对单层MoS2进行高效n型掺杂,从而得到一种空气稳定的掺杂TMDC。随着掺杂剂浓度增加,MoS2场效应晶体管的导通电流增加了三个数量级,并在约1个月内保持高空气稳定性的n型行为。输运测量表明,高度掺杂的MoS2具有3.4×1013 cm-2的高电子密度和金属型温度依赖性。第一性原理计算支持通过从K/苯并 - 18 - 冠 - 6络合物到单层MoS2的表面电荷转移进行电子掺杂。已证明图案化掺杂可改善基于MoS2的器件中的接触电阻。