Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA, 02155, USA.
Adv Biol (Weinh). 2021 Jul;5(7):e2100388. doi: 10.1002/adbi.202100388. Epub 2021 Apr 30.
Silk biomaterials are important for applications in biomedical fields due to their outstanding mechanical properties, biocompatibility, and tunable biodegradation. Chemical functionalization of silk by various chemistries can be leveraged to enhance and tune these features and enable the expansion of silk-based biomaterials into additional fields. Sugars are particularly relevant for intracellular communication, signal transduction events, as well as in hydrated extracellular matrices such as in cartilage, vitreous, and brain tissues. Multiple reaction pathways are demonstrated (carboxylation of serines followed by carbodiimide coupling with glucosamine, carboxylation of tyrosines followed by carbodiimide coupling with glucosamine; direct carbodiimide coupling of the inherent carboxylic acids of silk (aspartic and glutamic acid) with glucosamine) for the covalent conjugation of glucosamine onto silk with characterization by proton nuclear magnetic resonance ( H-NMR), liquid chromatography tandem mass spectroscopy (LC-MS), water contact angle (WCA), and Fourier transform infrared (FTIR) spectroscopy. The results indicate that different pathways substitute different amounts of glucosamine onto silk chains, with control over resulting material properties, including hydrophobicity/hydrophilicity and biological responses. The aqueous processability of these conjugates into functional material formats (films, sponges) is assessed. These new classes of bio-inspired materials can lead to multifunctional biomaterials for potential applications in different fields of biomedical engineering.
丝质生物材料具有出色的机械性能、生物相容性和可调节的生物降解性,因此在生物医学领域的应用十分重要。通过各种化学方法对丝质进行化学功能化,可以增强和调节这些特性,并将丝质生物材料扩展到其他领域。糖在细胞内通讯、信号转导事件中以及在水合细胞外基质(如软骨、玻璃体和脑组织)中尤为重要。多种反应途径(丝氨酸的羧化反应,然后与氨基葡萄糖通过碳二亚胺偶联;酪氨酸的羧化反应,然后与氨基葡萄糖通过碳二亚胺偶联;丝质固有的羧酸(天冬氨酸和谷氨酸)与氨基葡萄糖的直接碳二亚胺偶联)被证明可将氨基葡萄糖共价偶联到丝质上,通过质子核磁共振(1 H-NMR)、液相色谱串联质谱(LC-MS)、水接触角(WCA)和傅里叶变换红外(FTIR)光谱进行了表征。结果表明,不同的途径将不同数量的氨基葡萄糖取代到丝链上,从而控制了材料的特性,包括疏水性/亲水性和生物响应。评估了这些缀合物在功能性材料形式(薄膜、海绵)中的水溶性加工能力。这些新类别的仿生材料可用于潜在应用于生物医学工程不同领域的多功能生物材料。