Suppr超能文献

丝绸的糖功能化及其路径控制取代和性质。

Sugar Functionalization of Silks with Pathway-Controlled Substitution and Properties.

机构信息

Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA, 02155, USA.

出版信息

Adv Biol (Weinh). 2021 Jul;5(7):e2100388. doi: 10.1002/adbi.202100388. Epub 2021 Apr 30.

Abstract

Silk biomaterials are important for applications in biomedical fields due to their outstanding mechanical properties, biocompatibility, and tunable biodegradation. Chemical functionalization of silk by various chemistries can be leveraged to enhance and tune these features and enable the expansion of silk-based biomaterials into additional fields. Sugars are particularly relevant for intracellular communication, signal transduction events, as well as in hydrated extracellular matrices such as in cartilage, vitreous, and brain tissues. Multiple reaction pathways are demonstrated (carboxylation of serines followed by carbodiimide coupling with glucosamine, carboxylation of tyrosines followed by carbodiimide coupling with glucosamine; direct carbodiimide coupling of the inherent carboxylic acids of silk (aspartic and glutamic acid) with glucosamine) for the covalent conjugation of glucosamine onto silk with characterization by proton nuclear magnetic resonance ( H-NMR), liquid chromatography tandem mass spectroscopy (LC-MS), water contact angle (WCA), and Fourier transform infrared (FTIR) spectroscopy. The results indicate that different pathways substitute different amounts of glucosamine onto silk chains, with control over resulting material properties, including hydrophobicity/hydrophilicity and biological responses. The aqueous processability of these conjugates into functional material formats (films, sponges) is assessed. These new classes of bio-inspired materials can lead to multifunctional biomaterials for potential applications in different fields of biomedical engineering.

摘要

丝质生物材料具有出色的机械性能、生物相容性和可调节的生物降解性,因此在生物医学领域的应用十分重要。通过各种化学方法对丝质进行化学功能化,可以增强和调节这些特性,并将丝质生物材料扩展到其他领域。糖在细胞内通讯、信号转导事件中以及在水合细胞外基质(如软骨、玻璃体和脑组织)中尤为重要。多种反应途径(丝氨酸的羧化反应,然后与氨基葡萄糖通过碳二亚胺偶联;酪氨酸的羧化反应,然后与氨基葡萄糖通过碳二亚胺偶联;丝质固有的羧酸(天冬氨酸和谷氨酸)与氨基葡萄糖的直接碳二亚胺偶联)被证明可将氨基葡萄糖共价偶联到丝质上,通过质子核磁共振(1 H-NMR)、液相色谱串联质谱(LC-MS)、水接触角(WCA)和傅里叶变换红外(FTIR)光谱进行了表征。结果表明,不同的途径将不同数量的氨基葡萄糖取代到丝链上,从而控制了材料的特性,包括疏水性/亲水性和生物响应。评估了这些缀合物在功能性材料形式(薄膜、海绵)中的水溶性加工能力。这些新类别的仿生材料可用于潜在应用于生物医学工程不同领域的多功能生物材料。

相似文献

2
Silk chemistry and biomedical material designs.丝绸化学与生物医学材料设计。
Nat Rev Chem. 2023 May;7(5):302-318. doi: 10.1038/s41570-023-00486-x. Epub 2023 Apr 21.
5
Stem cell-based tissue engineering with silk biomaterials.基于干细胞与丝生物材料的组织工程
Biomaterials. 2006 Dec;27(36):6064-82. doi: 10.1016/j.biomaterials.2006.07.008. Epub 2006 Aug 7.
8
Advanced silk materials for musculoskeletal tissue regeneration.用于肌肉骨骼组织再生的先进丝绸材料。
Front Bioeng Biotechnol. 2023 May 2;11:1199507. doi: 10.3389/fbioe.2023.1199507. eCollection 2023.

引用本文的文献

本文引用的文献

2
Bioengineered Tissue Model of Fibroblast Activation for Modeling Pulmonary Fibrosis.用于模拟肺纤维化的成纤维细胞活化生物工程组织模型
ACS Biomater Sci Eng. 2019 May 13;5(5):2417-2429. doi: 10.1021/acsbiomaterials.8b01262. Epub 2019 Apr 26.
3
Extracellular Matrix Mimics Using Hyaluronan-Based Biomaterials.基于透明质酸的生物材料的细胞外基质模拟物。
Trends Biotechnol. 2021 Jan;39(1):90-104. doi: 10.1016/j.tibtech.2020.06.003. Epub 2020 Jul 9.
8
Thermoplastic moulding of regenerated silk.再生丝的热塑性成型。
Nat Mater. 2020 Jan;19(1):102-108. doi: 10.1038/s41563-019-0560-8. Epub 2019 Dec 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验