Suppr超能文献

从特定于上下文的蛋白质相互作用子网络中监督预测与衰老相关的基因。

Supervised Prediction of Aging-Related Genes From a Context-Specific Protein Interaction Subnetwork.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2022 Jul-Aug;19(4):2484-2498. doi: 10.1109/TCBB.2021.3076961. Epub 2022 Aug 8.

Abstract

Human aging is linked to many prevalent diseases. The aging process is highly influenced by genetic factors. Hence, it is important to identify human aging-related genes. We focus on supervised prediction of such genes. Gene expression-based methods for this purpose study genes in isolation from each other. While protein-protein interaction (PPI) network-based methods for this purpose account for interactions between genes' protein products, current PPI network data are context-unspecific, spanning different biological conditions. Instead, here, we focus on an aging-specific subnetwork of the entire PPI network, obtained by integrating aging-specific gene expression data and PPI network data. The potential of such data integration has been recognized but mostly in the context of cancer. So, we are the first to propose a supervised learning framework for predicting aging-related genes from an aging-specific PPI subnetwork. In a systematic and comprehensive evaluation, we find that in many of the evaluation tests: (i) using an aging-specific subnetwork indeed yields more accurate aging-related gene predictions than using the entire network, and (ii) predictive methods from our framework that have not previously been used for supervised prediction of aging-related genes outperform existing prominent methods for the same purpose. These results justify the need for our framework.

摘要

人类衰老与许多常见疾病有关。衰老过程受遗传因素的影响很大。因此,识别与人类衰老相关的基因非常重要。我们专注于监督预测这些基因。为此目的,基于基因表达的方法将基因彼此孤立地进行研究。虽然基于蛋白质-蛋白质相互作用 (PPI) 网络的方法考虑了基因蛋白产物之间的相互作用,但当前的 PPI 网络数据是无上下文的,涵盖了不同的生物学条件。相反,在这里,我们专注于整个 PPI 网络的一个特定于衰老的子网,该子网通过整合特定于衰老的基因表达数据和 PPI 网络数据获得。这种数据集成的潜力已经得到认可,但主要是在癌症的背景下。因此,我们是第一个从特定于衰老的 PPI 子网中提出用于预测与衰老相关的基因的监督学习框架的人。在系统和全面的评估中,我们发现,在许多评估测试中:(i)使用特定于衰老的子网确实比使用整个网络产生更准确的与衰老相关的基因预测,(ii)我们框架中以前未用于监督预测与衰老相关的基因的预测方法优于用于相同目的的现有突出方法。这些结果证明了我们框架的必要性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验