Suppr超能文献

主导生物网络。

Dominating biological networks.

机构信息

Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, Indiana, United States of America.

出版信息

PLoS One. 2011;6(8):e23016. doi: 10.1371/journal.pone.0023016. Epub 2011 Aug 26.

Abstract

Proteins are essential macromolecules of life that carry out most cellular processes. Since proteins aggregate to perform function, and since protein-protein interaction (PPI) networks model these aggregations, one would expect to uncover new biology from PPI network topology. Hence, using PPI networks to predict protein function and role of protein pathways in disease has received attention. A debate remains open about whether network properties of "biologically central (BC)" genes (i.e., their protein products), such as those involved in aging, cancer, infectious diseases, or signaling and drug-targeted pathways, exhibit some topological centrality compared to the rest of the proteins in the human PPI network.To help resolve this debate, we design new network-based approaches and apply them to get new insight into biological function and disease. We hypothesize that BC genes have a topologically central (TC) role in the human PPI network. We propose two different concepts of topological centrality. We design a new centrality measure to capture complex wirings of proteins in the network that identifies as TC those proteins that reside in dense extended network neighborhoods. Also, we use the notion of domination and find dominating sets (DSs) in the PPI network, i.e., sets of proteins such that every protein is either in the DS or is a neighbor of the DS. Clearly, a DS has a TC role, as it enables efficient communication between different network parts. We find statistically significant enrichment in BC genes of TC nodes and outperform the existing methods indicating that genes involved in key biological processes occupy topologically complex and dense regions of the network and correspond to its "spine" that connects all other network parts and can thus pass cellular signals efficiently throughout the network. To our knowledge, this is the first study that explores domination in the context of PPI networks.

摘要

蛋白质是生命中必不可少的大分子,执行大多数细胞过程。由于蛋白质聚集以发挥功能,并且蛋白质-蛋白质相互作用 (PPI) 网络模拟这些聚集,因此人们期望从 PPI 网络拓扑结构中发现新的生物学信息。因此,使用 PPI 网络预测蛋白质功能和蛋白质途径在疾病中的作用已经引起了关注。关于“生物中心(BC)”基因(即参与衰老、癌症、传染病或信号和药物靶向途径的基因)的网络属性是否与人类 PPI 网络中的其他蛋白质相比具有某种拓扑中心性,仍然存在争议。为了帮助解决这一争论,我们设计了新的基于网络的方法,并将其应用于获得对生物功能和疾病的新见解。我们假设 BC 基因在人类 PPI 网络中具有拓扑中心(TC)作用。我们提出了两种不同的拓扑中心性概念。我们设计了一种新的中心性度量来捕捉网络中蛋白质的复杂连接,该度量将那些位于密集扩展网络邻域中的蛋白质识别为 TC。此外,我们使用了支配的概念,并在 PPI 网络中找到了支配集(DS),即一组蛋白质,使得每个蛋白质要么在 DS 中,要么是 DS 的邻居。显然,DS 具有 TC 作用,因为它能够在不同的网络部分之间进行有效的通信。我们发现 TC 节点中 BC 基因的显著富集,并且优于现有的方法,这表明参与关键生物过程的基因占据了网络的拓扑复杂和密集区域,并且对应于连接网络所有其他部分的网络“脊柱”,因此可以有效地在整个网络中传递细胞信号。据我们所知,这是第一项探索 PPI 网络中支配的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/378f/3162560/6281296e3458/pone.0023016.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验