Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China.
Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, Shandong, China.
BMC Microbiol. 2021 May 1;21(1):133. doi: 10.1186/s12866-021-02203-4.
The prevalence of clinical multidrug-resistant (MDR) Pseudomonas aeruginosa has been increasing rapidly worldwide over the years and responsible for a wide range of acute and chronic infections with high mortalities. Although hundreds of complete genomes of clinical P. aeruginosa isolates have been sequenced, only a few complete genomes of mucoid strains are available, limiting a comprehensive understanding of this important group of opportunistic pathogens. Herein, the complete genome of a clinically isolated mucoid strain P. aeruginosa JNQH-PA57 was sequenced and assembled using Illumina and Oxford nanopore sequencing technologies. Genomic features, phylogenetic relationships, and comparative genomics of this pathogen were comprehensively analyzed using various bioinformatics tools. A series of phenotypic and molecular-genetic tests were conducted to investigate the mechanisms of carbapenem resistance in this strain.
Several genomic features of MDR P. aeruginosa JNQH-PA57 were identified based on the whole-genome sequencing. We found that the accessory genome of JNQH-PA57 including several prophages, genomic islands, as well as a PAPI-1 family integrative and conjugative element (ICE), mainly contributed to the larger genome of this strain (6,747,067 bp) compared to other popular P. aeruginosa strains (with an average genome size of 6,445,223 bp) listed in Pseudomonas Genome Database. Colony morphology analysis and biofilm crystal staining assay respectively demonstrated an enhanced alginate production and a thicker biofilm formation capability of JNQH-PA57. A deleted mutation at nt 424 presented in mucA gene, resulted in the upregulated expression of a sigma-factor AlgU and a GDP mannose dehydrogenase AlgD, which might explain the mucoid phenotype of this strain. As for the carbapenem resistance mechanisms, our results revealed that the interplay between impaired OprD porin, chromosomal β-lactamase OXA-488 expression, MexAB-OprM and MexXY-OprM efflux pumps overexpression, synergistically with the alginates-overproducing protective biofilm, conferred the high carbapenem resistance to P. aeruginosa JNQH-PA57.
Based on the genome analysis, we could demonstrate that the upregulated expression of algU and algD, which due to the truncation variant of MucA, might account for the mucoid phenotype of JNQH-PA57. Moreover, the resistance to carbapenem in P. aeruginosa JNQH-PA57 is multifactorial. The dataset presented in this study provided an essential genetic basis for the comprehensive cognition of the physiology, pathogenicity, and carbapenem resistance mechanisms of this clinical mucoid strain.
近年来,临床多重耐药(MDR)铜绿假单胞菌的流行率在全球范围内迅速上升,导致广泛的急性和慢性感染,死亡率很高。尽管已经对数百株临床分离的铜绿假单胞菌进行了全基因组测序,但只有少数粘液菌株的全基因组可用,限制了对这组重要机会性病原体的全面了解。在此,使用 Illumina 和 Oxford nanopore 测序技术对临床分离的粘液株铜绿假单胞菌 JNQH-PA57 进行了全基因组测序和组装。使用各种生物信息学工具,全面分析了该病原体的基因组特征、系统发育关系和比较基因组学。进行了一系列表型和分子遗传学测试,以研究该菌株碳青霉烯类耐药的机制。
根据全基因组测序,确定了 MDR 铜绿假单胞菌 JNQH-PA57 的几种基因组特征。我们发现,JNQH-PA57 的辅助基因组包括几个噬菌体、基因组岛以及一个 PAPI-1 家族整合和共轭元件(ICE),与流行的铜绿假单胞菌菌株(平均基因组大小为 6445223 bp)相比,主要导致该菌株的较大基因组(6747067 bp)。在粘菌素耐药机制方面,我们的研究结果表明,OprD 孔蛋白受损、染色体β-内酰胺酶 OXA-488 表达、MexAB-OprM 和 MexXY-OprM 外排泵过度表达之间的相互作用,以及 AlgU 和 AlgD 的上调表达,共同作用于过度产生的粘多糖保护性生物膜,赋予了铜绿假单胞菌 JNQH-PA57 对碳青霉烯类药物的高度耐药性。
基于基因组分析,我们可以证明 AlgU 和 AlgD 的上调表达可能是由于 MucA 的截断变体导致了 JNQH-PA57 的粘液表型。此外,铜绿假单胞菌 JNQH-PA57 对碳青霉烯类药物的耐药性是多因素的。本研究提供的数据集为全面认识该临床粘液株的生理、致病性和碳青霉烯类耐药机制提供了重要的遗传基础。