Computer Assisted Clinical Medicine, Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
Carl E. Ravin Advanced Imaging Labs, Department of Radiology, Duke University, Durham, USA.
Int J Comput Assist Radiol Surg. 2021 Aug;16(8):1277-1285. doi: 10.1007/s11548-021-02372-7. Epub 2021 May 2.
Sparsity of annotated data is a major limitation in medical image processing tasks such as registration. Registered multimodal image data are essential for the diagnosis of medical conditions and the success of interventional medical procedures. To overcome the shortage of data, we present a method that allows the generation of annotated multimodal 4D datasets.
We use a CycleGAN network architecture to generate multimodal synthetic data from the 4D extended cardiac-torso (XCAT) phantom and real patient data. Organ masks are provided by the XCAT phantom; therefore, the generated dataset can serve as ground truth for image segmentation and registration. Realistic simulation of respiration and heartbeat is possible within the XCAT framework. To underline the usability as a registration ground truth, a proof of principle registration is performed.
Compared to real patient data, the synthetic data showed good agreement regarding the image voxel intensity distribution and the noise characteristics. The generated T1-weighted magnetic resonance imaging, computed tomography (CT), and cone beam CT images are inherently co-registered. Thus, the synthetic dataset allowed us to optimize registration parameters of a multimodal non-rigid registration, utilizing liver organ masks for evaluation.
Our proposed framework provides not only annotated but also multimodal synthetic data which can serve as a ground truth for various tasks in medical imaging processing. We demonstrated the applicability of synthetic data for the development of multimodal medical image registration algorithms.
在医学图像处理任务(如配准)中,注释数据的稀疏性是一个主要限制。配准的多模态图像数据对于医疗条件的诊断和介入性医疗程序的成功至关重要。为了克服数据短缺的问题,我们提出了一种允许生成注释的多模态 4D 数据集的方法。
我们使用 CycleGAN 网络架构从 4D 扩展心脏 - 胸(XCAT)体模和真实患者数据生成多模态合成数据。器官掩模由 XCAT 体模提供;因此,生成的数据集可作为图像分割和配准的真实数据。在 XCAT 框架内可以实现呼吸和心跳的逼真模拟。为了强调作为配准真实数据的可用性,我们进行了原理验证配准。
与真实患者数据相比,合成数据在图像体素强度分布和噪声特性方面具有很好的一致性。生成的 T1 加权磁共振成像、计算机断层扫描(CT)和锥形束 CT 图像本质上是配准的。因此,该合成数据集使我们能够利用肝脏器官掩模优化多模态非刚性配准的参数,用于评估。
我们提出的框架不仅提供了注释数据,还提供了多模态合成数据,可以作为医学图像处理中各种任务的真实数据。我们证明了合成数据在开发多模态医学图像配准算法方面的适用性。