Suppr超能文献

分子力学计算分析抗原-抗体复合物的结合模式。

Analysis of Binding Modes of Antigen-Antibody Complexes by Molecular Mechanics Calculation.

机构信息

Graduate School of Pharmaceutical Sciences, Chiba UniversityRINGGOLD, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan.

出版信息

J Chem Inf Model. 2021 May 24;61(5):2396-2406. doi: 10.1021/acs.jcim.1c00167. Epub 2021 May 3.

Abstract

Antibodies are one of the most important protein molecules in biopharmaceutics. Due to the recent advance in technology for producing monoclonal antibodies, many structural data are available on the antigen-antibody complexes. To characterize the molecular interaction in antigen-antibody recognition, we computationally analyzed 500 complex structures by molecular mechanics calculations. The presence of Ser and Tyr is markedly large in the complementarity-determining regions (CDRs). Although Ser is abundant in CDRs, its contribution to the binding score is not large. Instead, Tyr, Asp, Glu, and Arg significantly contribute to the molecular interaction from the viewpoint of the binding score. The decomposition of the binding score suggests that the hydrophilic interaction is predominant in all CDRs compared with the hydrophobic one. The contribution of the heavy chain is larger than that of the light chain. In particular, H2 and H3 largely contribute to the binding interaction. Tyr is a main contributing residue both in H2 and H3. The positively charged residue Arg also significantly contributes to the binding score in H3, while the contribution of Lys is small. The appearance of Ser is remarkable in H2, and Asp is abundant in H3. The non-charged polar residues, Thr, Asn, and Gln, appear much in H2, compared to appearing in H3. The negatively charged residues Asp and Glu significantly contribute to the binding score in H3. The contributions of Phe and Trp are not large in spite that the aromatic residues are capable of making the π-π or CH-π interaction. Gly is commonly abundant both in H2 and H3. The average distance of the shortest direct hydrogen bond between the antigen and antibody is longer than that of the hydrogen bonds observed in the complexes between compounds and their target proteins. Therefore, the antigen-antibody interface is not so tight as the compound-target protein interface. The calculation of shape complementarity is consistent with the result of the hydrogen bonds in that the fitness of the antigen-antibody contact is not so high as that of the compound-target protein contact. There exist many water molecules at the antigen-antibody interface. These findings suggest that Tyr, Asp, Glu, and Arg are rich in H3 and work as major contributors for the interaction with the antigen. Ser, Thr, Asn, and Gln are rich in H2 and support the interaction with enhancing molecular fitness. Gly is helpful in increasing flexibility and geometrical diversity. Because the antigen-antibody binding is fundamentally hydrophilic-driven, the non-polar residues are unfavorable for mediating the contact even for the aromatic residues such as Phe and Trp.

摘要

抗体是生物制药中最重要的蛋白质分子之一。由于最近单克隆抗体生产技术的进步,许多关于抗原-抗体复合物的结构数据已经可用。为了表征抗原-抗体识别中的分子相互作用,我们通过分子力学计算分析了 500 个复合物结构。在互补决定区(CDR)中,Ser 和 Tyr 的存在明显较大。尽管 Ser 在 CDR 中丰富,但它对结合评分的贡献不大。相反,Tyr、Asp、Glu 和 Arg 从结合评分的角度来看,对分子相互作用有显著贡献。结合评分的分解表明,与疏水性相比,所有 CDR 中都以亲水性相互作用为主。重链的贡献大于轻链。特别是,H2 和 H3 对结合相互作用有很大贡献。Tyr 是 H2 和 H3 中主要的贡献残基。带正电荷的残基 Arg 也在 H3 中对结合评分有显著贡献,而 Lys 的贡献较小。Ser 在 H2 中的出现很显著,Asp 在 H3 中丰富。与出现在 H3 中相比,非电荷极性残基 Thr、Asn 和 Gln 在 H2 中大量出现。带负电荷的残基 Asp 和 Glu 在 H3 中对结合评分有显著贡献。尽管芳香族残基能够形成π-π或 CH-π相互作用,但 Phe 和 Trp 的贡献不大。Gly 在 H2 和 H3 中都很常见。抗原和抗体之间最短直接氢键的平均距离大于化合物与其靶蛋白之间复合物中观察到的氢键。因此,抗原-抗体界面不如化合物-靶蛋白界面紧密。形状互补性的计算与氢键的结果一致,即抗原-抗体接触的适应性不如化合物-靶蛋白接触的适应性高。在抗原-抗体界面存在许多水分子。这些发现表明,Tyr、Asp、Glu 和 Arg 在 H3 中丰富,作为与抗原相互作用的主要贡献者。Ser、Thr、Asn 和 Gln 在 H2 中丰富,支持相互作用,提高分子适应性。Gly 有助于增加灵活性和几何多样性。由于抗原-抗体结合从根本上是亲水驱动的,非极性残基不利于介导接触,即使是芳香族残基如 Phe 和 Trp 也是如此。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验