Suppr超能文献

临床实用且可解释的 ICU 死亡率预测深度学习模型及其外部验证。

A Clinically Practical and Interpretable Deep Model for ICU Mortality Prediction with External Validation.

机构信息

PingAn Health Technology, Beijing, China.

The General Hospital of the People's Liberation Army of China, Beijing, China.

出版信息

AMIA Annu Symp Proc. 2021 Jan 25;2020:629-637. eCollection 2020.

Abstract

Deep learning models are increasingly studied in the field of critical care. However, due to the lack of external validation and interpretability, it is difficult to generalize deep learning models in critical care senarios. Few works have validated the performance of the deep learning models with external datasets. To address this, we propose a clinically practical and interpretable deep model for intensive care unit (ICU) mortality prediction with external validation. We use the newly published dataset Philips eICU to train a recurrent neural network model with two-level attention mechanism, and use the MIMIC III dataset as the external validation set to verify the model performance. This model achieves a high accuracy (AUC = 0.855 on the external validation set) and have good interpretability. Based on this model, we develop a system to support clinical decision-making in ICUs.

摘要

深度学习模型在重症监护领域的研究越来越多。然而,由于缺乏外部验证和可解释性,很难将深度学习模型推广到重症监护场景中。很少有工作使用外部数据集来验证深度学习模型的性能。为了解决这个问题,我们提出了一种具有临床实用性和可解释性的深度学习模型,用于重症监护病房(ICU)死亡率预测,并进行了外部验证。我们使用新发布的 Philips eICU 数据集来训练具有两级注意力机制的循环神经网络模型,并使用 MIMIC III 数据集作为外部验证集来验证模型性能。该模型具有较高的准确性(外部验证集的 AUC = 0.855)和良好的可解释性。基于该模型,我们开发了一个系统,以支持 ICU 中的临床决策。

相似文献

3
ISeeU: Visually interpretable deep learning for mortality prediction inside the ICU.
J Biomed Inform. 2019 Oct;98:103269. doi: 10.1016/j.jbi.2019.103269. Epub 2019 Aug 17.
4
Interpretable machine learning models for predicting in-hospital death in patients in the intensive care unit with cerebral infarction.
Comput Methods Programs Biomed. 2023 Apr;231:107431. doi: 10.1016/j.cmpb.2023.107431. Epub 2023 Feb 18.
5
Interpretable machine learning models for predicting 90-day death in patients in the intensive care unit with epilepsy.
Seizure. 2024 Jan;114:23-32. doi: 10.1016/j.seizure.2023.11.017. Epub 2023 Nov 25.
8
Interpretability of time-series deep learning models: A study in cardiovascular patients admitted to Intensive care unit.
J Biomed Inform. 2021 Sep;121:103876. doi: 10.1016/j.jbi.2021.103876. Epub 2021 Jul 27.

本文引用的文献

1
Machine Learning Approaches to Predict 6-Month Mortality Among Patients With Cancer.
JAMA Netw Open. 2019 Oct 2;2(10):e1915997. doi: 10.1001/jamanetworkopen.2019.15997.
2
Multitask learning and benchmarking with clinical time series data.
Sci Data. 2019 Jun 17;6(1):96. doi: 10.1038/s41597-019-0103-9.
4
Benchmarking deep learning models on large healthcare datasets.
J Biomed Inform. 2018 Jul;83:112-134. doi: 10.1016/j.jbi.2018.04.007. Epub 2018 Jun 5.
5
Metabolic acidosis and the role of unmeasured anions in critical illness and injury.
J Surg Res. 2018 Apr;224:5-17. doi: 10.1016/j.jss.2017.11.013. Epub 2017 Dec 8.
7
Early hospital mortality prediction of intensive care unit patients using an ensemble learning approach.
Int J Med Inform. 2017 Dec;108:185-195. doi: 10.1016/j.ijmedinf.2017.10.002. Epub 2017 Oct 5.
8
Diagnosis and evaluation of hyperbilirubinemia.
Curr Opin Gastroenterol. 2017 May;33(3):164-170. doi: 10.1097/MOG.0000000000000354.
9
MIMIC-III, a freely accessible critical care database.
Sci Data. 2016 May 24;3:160035. doi: 10.1038/sdata.2016.35.
10
Pathophysiology and Classification of Respiratory Failure.
Crit Care Nurs Q. 2016 Apr-Jun;39(2):85-93. doi: 10.1097/CNQ.0000000000000102.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验