University of Florida, Gainesville, Florida, USA.
Johns Hopkins University, Baltimore, Maryland, USA.
AMIA Annu Symp Proc. 2021 Jan 25;2020:803-812. eCollection 2020.
Wrist accelerometers for assessing hallmark measures of physical activity (PA) are rapidly growing with the advent of smartwatch technology. Given the growing popularity of wrist-worn accelerometers, there needs to be a rigorous evaluation for recognizing (PA) type and estimating energy expenditure (EE) across the lifespan. Participants (66% women, aged 20-89 yrs) performed a battery of 33 daily activities in a standardized laboratory setting while a tri-axial accelerometer collected data from the right wrist. A portable metabolic unit was worn to measure metabolic intensity. We built deep learning networks to extract spatial and temporal representations from the time-series data, and used them to recognize PA type and estimate EE. The deep learning models resulted in high performance; the F1 score was: 0.82, 0.81, and 95 for recognizing sedentary, locomotor, and lifestyle activities, respectively. The root mean square error was 1.1 (+/-0.13) for the estimation of EE.
腕部加速度计可用于评估体力活动(PA)的标志性指标,随着智能手表技术的出现,其应用迅速普及。鉴于腕戴式加速度计日益普及,需要对其进行严格评估,以识别整个生命周期中的(PA)类型和估算能量消耗(EE)。参与者(66%为女性,年龄 20-89 岁)在标准化实验室环境中进行了一系列 33 项日常活动,同时三轴加速度计从右手腕收集数据。佩戴便携式代谢装置以测量代谢强度。我们构建了深度学习网络,从时间序列数据中提取空间和时间表示,并将其用于识别 PA 类型和估算 EE。深度学习模型表现出了优异的性能;识别久坐、运动和生活方式活动的 F1 得分为 0.82、0.81 和 95,EE 估算的均方根误差为 1.1(+/−0.13)。