Suppr超能文献

深度家务:使用深度学习估计体力活动的标志性度量。

Deep CHORES: Estimating Hallmark Measures of Physical Activity Using Deep Learning.

机构信息

University of Florida, Gainesville, Florida, USA.

Johns Hopkins University, Baltimore, Maryland, USA.

出版信息

AMIA Annu Symp Proc. 2021 Jan 25;2020:803-812. eCollection 2020.

Abstract

Wrist accelerometers for assessing hallmark measures of physical activity (PA) are rapidly growing with the advent of smartwatch technology. Given the growing popularity of wrist-worn accelerometers, there needs to be a rigorous evaluation for recognizing (PA) type and estimating energy expenditure (EE) across the lifespan. Participants (66% women, aged 20-89 yrs) performed a battery of 33 daily activities in a standardized laboratory setting while a tri-axial accelerometer collected data from the right wrist. A portable metabolic unit was worn to measure metabolic intensity. We built deep learning networks to extract spatial and temporal representations from the time-series data, and used them to recognize PA type and estimate EE. The deep learning models resulted in high performance; the F1 score was: 0.82, 0.81, and 95 for recognizing sedentary, locomotor, and lifestyle activities, respectively. The root mean square error was 1.1 (+/-0.13) for the estimation of EE.

摘要

腕部加速度计可用于评估体力活动(PA)的标志性指标,随着智能手表技术的出现,其应用迅速普及。鉴于腕戴式加速度计日益普及,需要对其进行严格评估,以识别整个生命周期中的(PA)类型和估算能量消耗(EE)。参与者(66%为女性,年龄 20-89 岁)在标准化实验室环境中进行了一系列 33 项日常活动,同时三轴加速度计从右手腕收集数据。佩戴便携式代谢装置以测量代谢强度。我们构建了深度学习网络,从时间序列数据中提取空间和时间表示,并将其用于识别 PA 类型和估算 EE。深度学习模型表现出了优异的性能;识别久坐、运动和生活方式活动的 F1 得分为 0.82、0.81 和 95,EE 估算的均方根误差为 1.1(+/−0.13)。

相似文献

本文引用的文献

1
A Framework to Evaluate Devices That Assess Physical Behavior.评估物理行为的设备的评估框架。
Exerc Sport Sci Rev. 2019 Oct;47(4):206-214. doi: 10.1249/JES.0000000000000206.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验