Suppr超能文献

利用多机构临床知识库中的自动儿科肺炎检测增强比较效果研究:一项PHIS+试点研究

Enhancing Comparative Effectiveness Research With Automated Pediatric Pneumonia Detection in a Multi-Institutional Clinical Repository: A PHIS+ Pilot Study.

作者信息

Meystre Stephane, Gouripeddi Ramkiran, Tieder Joel, Simmons Jeffrey, Srivastava Rajendu, Shah Samir

机构信息

Medical University of South Carolina, Charleston, SC, United States.

Department of Biomedical Informatics, University of Utah, Salt Lake City, UT, United States.

出版信息

J Med Internet Res. 2017 May 15;19(5):e162. doi: 10.2196/jmir.6887.

Abstract

BACKGROUND

Community-acquired pneumonia is a leading cause of pediatric morbidity. Administrative data are often used to conduct comparative effectiveness research (CER) with sufficient sample sizes to enhance detection of important outcomes. However, such studies are prone to misclassification errors because of the variable accuracy of discharge diagnosis codes.

OBJECTIVE

The aim of this study was to develop an automated, scalable, and accurate method to determine the presence or absence of pneumonia in children using chest imaging reports.

METHODS

The multi-institutional PHIS+ clinical repository was developed to support pediatric CER by expanding an administrative database of children's hospitals with detailed clinical data. To develop a scalable approach to find patients with bacterial pneumonia more accurately, we developed a Natural Language Processing (NLP) application to extract relevant information from chest diagnostic imaging reports. Domain experts established a reference standard by manually annotating 282 reports to train and then test the NLP application. Findings of pleural effusion, pulmonary infiltrate, and pneumonia were automatically extracted from the reports and then used to automatically classify whether a report was consistent with bacterial pneumonia.

RESULTS

Compared with the annotated diagnostic imaging reports reference standard, the most accurate implementation of machine learning algorithms in our NLP application allowed extracting relevant findings with a sensitivity of .939 and a positive predictive value of .925. It allowed classifying reports with a sensitivity of .71, a positive predictive value of .86, and a specificity of .962. When compared with each of the domain experts manually annotating these reports, the NLP application allowed for significantly higher sensitivity (.71 vs .527) and similar positive predictive value and specificity .

CONCLUSIONS

NLP-based pneumonia information extraction of pediatric diagnostic imaging reports performed better than domain experts in this pilot study. NLP is an efficient method to extract information from a large collection of imaging reports to facilitate CER.

摘要

背景

社区获得性肺炎是儿童发病的主要原因。行政数据常被用于开展具有足够样本量的比较效果研究(CER),以提高对重要结局的检测能力。然而,由于出院诊断编码的准确性不一,此类研究容易出现错误分类。

目的

本研究旨在开发一种自动化、可扩展且准确的方法,利用胸部影像报告来确定儿童是否患有肺炎。

方法

通过扩展儿童医院行政数据库并纳入详细临床数据,开发了多机构的PHIS+临床知识库,以支持儿科CER。为了开发一种更准确地找到细菌性肺炎患儿的可扩展方法,我们开发了一个自然语言处理(NLP)应用程序,从胸部诊断影像报告中提取相关信息。领域专家通过手动注释282份报告建立了参考标准,用于训练并随后测试NLP应用程序。从报告中自动提取胸腔积液、肺部浸润和肺炎的结果,然后用于自动分类报告是否与细菌性肺炎相符。

结果

与注释后的诊断影像报告参考标准相比,我们的NLP应用程序中机器学习算法最准确的实现方式能够提取相关结果,灵敏度为0.939,阳性预测值为0.925。它能够以0.71的灵敏度、0.86的阳性预测值和0.962的特异性对报告进行分类。与手动注释这些报告的每位领域专家相比,NLP应用程序的灵敏度显著更高(0.71对0.527),阳性预测值和特异性相似。

结论

在这项初步研究中,基于NLP的儿科诊断影像报告肺炎信息提取比领域专家表现更好。NLP是一种从大量影像报告中提取信息以促进CER的有效方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb27/5447826/2bb28966a2ff/jmir_v19i5e162_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验