Suppr超能文献

用于插管技能评估的运动平滑度指标:哪些因素至关重要?

Motion Smoothness Metrics for Cannulation Skill Assessment: What Factors Matter?

作者信息

Singh Simar, Bible Joe, Liu Zhanhe, Zhang Ziyang, Singapogu Ravikiran

机构信息

Department of Bioengineering, Clemson University, Clemson, SC, United States.

Department of Mathematical and Statistical Sciences, Clemson University, Clemson, SC, United States.

出版信息

Front Robot AI. 2021 Apr 16;8:625003. doi: 10.3389/frobt.2021.625003. eCollection 2021.

Abstract

Medical training simulators have the potential to provide remote and automated assessment of skill vital for medical training. Consequently, there is a need to develop "smart" training devices with robust metrics that can quantify clinical skills for effective training and self-assessment. Recently, metrics that quantify motion smoothness such as log dimensionless jerk () and spectral arc length () are increasingly being applied in medical simulators. However, two key questions remain about the efficacy of such metrics: how do these metrics relate to clinical skill, and how to best compute these metrics from sensor data and relate them with similar metrics? This study addresses these questions in the context of hemodialysis cannulation by enrolling 52 clinicians who performed cannulation in a simulated arteriovenous (AV) fistula. For clinical skill, results demonstrate that the objective outcome metric flash ratio (), developed to measure the quality of task completion, outperformed traditional skill indicator metrics (years of experience and global rating sheet scores). For computing motion smoothness metrics for skill assessment, we observed that the lowest amount of smoothing could result in unreliable metrics. Furthermore, the relative efficacy of motion smoothness metrics when compared with other process metrics in correlating with skill was similar for , the most accurate measure of skill. These results provide guidance for the computation and use of motion-based metrics for clinical skill assessment, including utilizing objective outcome metrics as ideal measures for quantifying skill.

摘要

医学训练模拟器有潜力对医学训练至关重要的技能进行远程和自动评估。因此,需要开发具有强大指标的“智能”训练设备,这些指标可以量化临床技能以进行有效的训练和自我评估。最近,诸如对数无量纲加加速度()和谱弧长()等量化运动平滑度的指标越来越多地应用于医学模拟器中。然而,关于这些指标的有效性仍存在两个关键问题:这些指标与临床技能有何关系,以及如何从传感器数据中最佳地计算这些指标并将它们与类似指标相关联?本研究通过招募52名在模拟动静脉(AV)内瘘中进行插管的临床医生,在血液透析插管的背景下解决了这些问题。对于临床技能,结果表明,为衡量任务完成质量而开发的客观结果指标闪光率()优于传统技能指标(经验年限和整体评分表分数)。对于计算用于技能评估的运动平滑度指标,我们观察到最低程度的平滑可能会导致不可靠的指标。此外,对于技能的最准确度量,运动平滑度指标与其他过程指标在与技能相关性方面的相对有效性相似。这些结果为基于运动的指标用于临床技能评估的计算和使用提供了指导,包括将客观结果指标用作量化技能的理想度量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7698/8085519/f70b90143b78/frobt-08-625003-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验