Suppr超能文献

使用人工智能对阅读工作列表进行主动重新排序对颅内出血头部CT解读的周转时间有有益影响。

Active Reprioritization of the Reading Worklist Using Artificial Intelligence Has a Beneficial Effect on the Turnaround Time for Interpretation of Head CT with Intracranial Hemorrhage.

作者信息

O'Neill Thomas J, Xi Yin, Stehel Edward, Browning Travis, Ng Yee Seng, Baker Chris, Peshock Ronald M

机构信息

Departments of Radiology (T.J.O., Y.X., E.S., T.B., Y.S.N., R.M.P.) and Health Systems Information Resources (C.B.), University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, 5323 Harry Hines Blvd, Dallas TX 75235.

出版信息

Radiol Artif Intell. 2020 Nov 18;3(2):e200024. doi: 10.1148/ryai.2020200024. eCollection 2021 Mar.

Abstract

PURPOSE

To determine how to optimize the delivery of machine learning techniques in a clinical setting to detect intracranial hemorrhage (ICH) on non-contrast-enhanced CT images to radiologists to improve workflow.

MATERIALS AND METHODS

In this study, a commercially available machine learning algorithm that flags abnormal noncontrast CT examinations for ICH was implemented in a busy academic neuroradiology practice between September 2017 and March 2019. The algorithm was introduced in three phases: as a "pop-up" widget on ancillary monitors, as a marked examination in reading worklists, and as a marked examination for reprioritization based on the presence of the flag. A statistical approach, which was based on a queuing theory, was implemented to assess the impact of each intervention on queue-adjusted wait and turnaround time compared with historical controls.

RESULTS

Notification with a widget or flagging the examination had no effect on queue-adjusted image wait ( > .99) or turnaround time ( = .6). However, a reduction in queue-adjusted wait time was observed between negative (15.45 minutes; 95% CI: 15.07, 15.38) and positive (12.02 minutes; 95% CI: 11.06, 12.97; < .0001) artificial intelligence-detected ICH examinations with reprioritization. Reduced wait time was present for all order classes but was greatest for examinations ordered as routine for both inpatients and outpatients because of their low priority.

CONCLUSION

The approach used to present flags from artificial intelligence and machine learning algorithms to the radiologist can reduce image wait time and turnaround times.© RSNA, 2021See also the commentary by O'Connor and Bhalla in this issue.

摘要

目的

确定如何在临床环境中优化机器学习技术的应用,以便在非增强CT图像上检测颅内出血(ICH),从而提高放射科医生的工作流程效率。

材料与方法

在本研究中,2017年9月至2019年3月期间,在一家繁忙的学术神经放射科实践中实施了一种可用于标记非增强CT检查中ICH异常情况的商用机器学习算法。该算法分三个阶段引入:作为辅助监视器上的“弹出式”小工具;作为阅读工作列表中的标记检查;作为基于标记存在情况进行重新排序的标记检查。采用基于排队论的统计方法,评估每种干预措施与历史对照相比对队列调整后的等待时间和周转时间的影响。

结果

使用小工具通知或标记检查对队列调整后的图像等待时间(>.99)或周转时间(=.6)没有影响。然而,在人工智能检测到的ICH检查中,经过重新排序后,阴性(15.45分钟;95%CI:15.07,15.38)和阳性(12.02分钟;95%CI:11.06,12.97;<.0001)检查之间的队列调整等待时间有所减少。所有订单类别等待时间均减少,但对于因优先级低而作为住院患者和门诊患者常规检查的订单,减少幅度最大。

结论

向放射科医生呈现人工智能和机器学习算法标记的方法可以减少图像等待时间和周转时间。©RSNA,2021另见本期O'Connor和Bhalla的评论。

相似文献

引用本文的文献

本文引用的文献

5
Detecting Intracranial Hemorrhage with Deep Learning.利用深度学习检测颅内出血。
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:583-587. doi: 10.1109/EMBC.2018.8512336.
7
The Benefit of a Triage System to Expedite Acute Stroke Head Computed Tomography Interpretations.分诊系统对加快急性卒中头部计算机断层扫描解读的益处。
J Stroke Cerebrovasc Dis. 2018 May;27(5):1190-1193. doi: 10.1016/j.jstrokecerebrovasdis.2017.11.038. Epub 2018 Jan 3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验