Suppr超能文献

基于人工智能的医学影像学危急值自动识别与在线通知系统

Automated Critical Test Findings Identification and Online Notification System Using Artificial Intelligence in Imaging.

机构信息

From the Department of Radiology, The Ohio State University Wexner Medical Center, 395 W 12th Ave, 4th Floor, Room 422, Columbus, OH 43210.

出版信息

Radiology. 2017 Dec;285(3):923-931. doi: 10.1148/radiol.2017162664. Epub 2017 Jul 3.

Abstract

Purpose To evaluate the performance of an artificial intelligence (AI) tool using a deep learning algorithm for detecting hemorrhage, mass effect, or hydrocephalus (HMH) at non-contrast material-enhanced head computed tomographic (CT) examinations and to determine algorithm performance for detection of suspected acute infarct (SAI). Materials and Methods This HIPAA-compliant retrospective study was completed after institutional review board approval. A training and validation dataset of noncontrast-enhanced head CT examinations that comprised 100 examinations of HMH, 22 of SAI, and 124 of noncritical findings was obtained resulting in 2583 representative images. Examinations were processed by using a convolutional neural network (deep learning) using two different window and level configurations (brain window and stroke window). AI algorithm performance was tested on a separate dataset containing 50 examinations with HMH findings, 15 with SAI findings, and 35 with noncritical findings. Results Final algorithm performance for HMH showed 90% (45 of 50) sensitivity (95% confidence interval [CI]: 78%, 97%) and 85% (68 of 80) specificity (95% CI: 76%, 92%), with area under the receiver operating characteristic curve (AUC) of 0.91 with the brain window. For SAI, the best performance was achieved with the stroke window showing 62% (13 of 21) sensitivity (95% CI: 38%, 82%) and 96% (27 of 28) specificity (95% CI: 82%, 100%), with AUC of 0.81. Conclusion AI using deep learning demonstrates promise for detecting critical findings at noncontrast-enhanced head CT. A dedicated algorithm was required to detect SAI. Detection of SAI showed lower sensitivity in comparison to detection of HMH, but showed reasonable performance. Findings support further investigation of the algorithm in a controlled and prospective clinical setting to determine whether it can independently screen noncontrast-enhanced head CT examinations and notify the interpreting radiologist of critical findings. RSNA, 2017 Online supplemental material is available for this article.

摘要

目的 评估一种基于深度学习算法的人工智能(AI)工具在非增强头部 CT 检查中检测出血、肿块效应或脑积水(HMH)以及检测疑似急性梗死(SAI)的性能。

材料与方法 本研究符合 HIPAA 规定,为回顾性研究,经机构审查委员会批准。获得了一个包含 100 例 HMH、22 例 SAI 和 124 例非危急发现的非增强头部 CT 检查的训练和验证数据集,共 2583 张代表性图像。使用卷积神经网络(深度学习)对检查进行处理,使用两种不同的窗宽和窗位设置(脑窗和卒中窗)。AI 算法在一个包含 50 例 HMH 发现、15 例 SAI 发现和 35 例非危急发现的独立数据集上进行测试。

结果 最终的 HMH 算法性能显示,敏感性为 90%(50 例中的 45 例)(95%置信区间[CI]:78%,97%),特异性为 85%(80 例中的 68 例)(95%CI:76%,92%),脑窗的受试者工作特征曲线下面积(AUC)为 0.91。对于 SAI,卒中窗的表现最佳,敏感性为 62%(21 例中的 13 例)(95%CI:38%,82%),特异性为 96%(28 例中的 27 例)(95%CI:82%,100%),AUC 为 0.81。

结论 基于深度学习的 AI 技术在非增强头部 CT 中检测危急发现具有应用前景。需要专门的算法来检测 SAI。与检测 HMH 相比,SAI 的检测敏感性较低,但性能合理。研究结果支持在受控和前瞻性临床环境中进一步研究该算法,以确定其是否能够独立筛查非增强头部 CT 检查并向阅片放射科医生报告危急发现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验