Suppr超能文献

直肠癌多模态放射组学术前预测神经周围侵犯。

Preoperative prediction of perineural invasion with multi-modality radiomics in rectal cancer.

机构信息

Department of Radiology, The First Hospital of Jilin University, Jilin Provincial Key Laboratory of Medical Imaging and Big Data, Changchun, China.

Department of Gastric and Colorectal Surgery, The First Hospital of Jilin University, Changchun, China.

出版信息

Sci Rep. 2021 May 3;11(1):9429. doi: 10.1038/s41598-021-88831-2.

Abstract

Perineural invasion (PNI) as a grossly underreported independent risk predictor in rectal cancer is hard to identify preoperatively. We aim to predict PNI status in rectal cancer using multi-modality radiomics. In total, 396 radiomics features were extracted from T2-weighted images (T2WIs), diffusion-weighted images (DWIs), and portal venous phase of contrast-enhanced CT (CE-CT) respectively of 94 consecutive patients with histologically confirmed rectal cancer. T2WI score, DWI score, and CT score were calculated via the radiomics features selection and optimization. Discrimination, calibration, and clinical benefit ability were used to evaluate the performance of the radiomics scores in both training and testing datasets. CT score and T2WI score were independent risk predictors [CT score, OR (95% CI) = 4.218 (1.070-16.620); T2WI score, OR (95% CI) = 105.721 (3.091-3615.790)]. The concise score which combined CT score and T2WI score, showed the best performance [training dataset, AUC (95% CI) = 0.906 (0.833-0.979); testing dataset, AUC (95% CI) = 0.884 (0.761-1.000)] and good calibration (P > 0.05 in the Hosmer-Lemeshow test for the training and testing datasets). Decision curve analysis showed that the multi-modality radiomics nomogram had a higher clinical net benefit. The multi-modality radiomics score could be used to preoperatively assess PNI status in rectal cancer.

摘要

神经周围侵犯(PNI)作为直肠癌中一个严重报道不足的独立危险因素,术前难以识别。我们旨在使用多模态放射组学预测直肠癌的 PNI 状态。共从 94 例经组织学证实的直肠癌患者的 T2 加权图像(T2WI)、扩散加权图像(DWI)和对比增强 CT 门静脉期(CE-CT)中提取了 396 个放射组学特征。通过放射组学特征选择和优化计算 T2WI 评分、DWI 评分和 CT 评分。使用判别、校准和临床获益能力评估放射组学评分在训练和测试数据集的性能。CT 评分和 T2WI 评分是独立的危险因素[CT 评分,OR(95%CI)=4.218(1.070-16.620);T2WI 评分,OR(95%CI)=105.721(3.091-3615.790)]。结合 CT 评分和 T2WI 评分的简洁评分表现出最佳性能[训练数据集,AUC(95%CI)=0.906(0.833-0.979);测试数据集,AUC(95%CI)=0.884(0.761-1.000)]和良好的校准(训练和测试数据集的 Hosmer-Lemeshow 检验中 P>0.05)。决策曲线分析表明,多模态放射组学列线图具有更高的临床净获益。多模态放射组学评分可用于术前评估直肠癌的 PNI 状态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fd8/8093213/add60642c9e2/41598_2021_88831_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验