Center for the Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology, Technická 5, Prague, 16628, Czech Republic.
Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno, 61200, Czech Republic.
Small. 2021 Jun;17(23):e2100294. doi: 10.1002/smll.202100294. Epub 2021 May 4.
Micro/nanomotors are capable of a wide variety of tasks related, i.e., to biomedical or environmental applications. Light-driven semiconductor-based micromotors are especially appealing, as they can split surrounding water via light irradiation, and therefore, they can move infinitely. However, their motion is typically limited to in-plane motion with four degrees of freedom (4DoF) or even pseudo-1D motion with 2DoF. Herein, magnetically steerable tubular TiO /Fe O /CdS micromotors, termed microsubmarines, with 6DoF motion, based on a fuel-free design where surrounding water acts as fuel upon visible light irradiation, are presented, with an average velocity of 7.9 µm s . Besides, the generation of radicals via such water splitting aids the photocatalytic chemicals degradation with the potential to use solar radiation. A light-induced self-electrophoretic mechanism is responsible for the self-propulsion and can be used to predict the motion direction based on the structure and composition. Finally, the TiO /Fe O /CdS microsubmarines are tested in a proof-of-concept application of high-energy explosive, e.g., picric acid, photocatalytic degradation, with the best performance owing to the versatility of 6DoF motion, the surface coating with amorphous TiO layer, and UV light. The results can help optimize light-active micromotor design for potential national security and environmental application, hydrogen evolution, and target cargo delivery.
微/纳米马达能够完成各种相关任务,例如生物医学或环境应用。基于半导体的光驱动微马达尤其吸引人,因为它们可以通过光照射分解周围的水,因此可以无限移动。然而,它们的运动通常仅限于平面内运动(具有 4 个自由度)或甚至具有 2 个自由度的伪 1D 运动。在此,提出了基于无燃料设计的磁性可转向管状 TiO /Fe O /CdS 微马达,称为微型潜艇,具有 6 个自由度的运动,其中周围的水在可见光照射下充当燃料,平均速度为 7.9 µm/s。此外,通过这种水分解产生的自由基有助于光催化化学降解,并有可能利用太阳辐射。光诱导的自电泳机制是自推进的原因,可以根据结构和组成来预测运动方向。最后,TiO /Fe O /CdS 微型潜艇在高能炸药(例如苦味酸)的概念验证应用中进行了测试,用于光催化降解,由于 6 自由度运动的多功能性、非晶态 TiO 层的表面涂层和紫外光的原因,其性能最佳。这些结果有助于优化光活性微马达设计,以用于潜在的国家安全和环境应用、制氢和目标货物输送。