Suppr超能文献

JAS-GAN:基于生成对抗网络的不平衡心房目标上心房和疤痕联合分割。

JAS-GAN: Generative Adversarial Network Based Joint Atrium and Scar Segmentations on Unbalanced Atrial Targets.

出版信息

IEEE J Biomed Health Inform. 2022 Jan;26(1):103-114. doi: 10.1109/JBHI.2021.3077469. Epub 2022 Jan 17.

Abstract

Automated and accurate segmentations of left atrium (LA) and atrial scars from late gadolinium-enhanced cardiac magnetic resonance (LGE CMR) images are in high demand for quantifying atrial scars. The previous quantification of atrial scars relies on a two-phase segmentation for LA and atrial scars due to their large volume difference (unbalanced atrial targets). In this paper, we propose an inter-cascade generative adversarial network, namely JAS-GAN, to segment the unbalanced atrial targets from LGE CMR images automatically and accurately in an end-to-end way. Firstly, JAS-GAN investigates an adaptive attention cascade to automatically correlate the segmentation tasks of the unbalanced atrial targets. The adaptive attention cascade mainly models the inclusion relationship of the two unbalanced atrial targets, where the estimated LA acts as the attention map to adaptively focus on the small atrial scars roughly. Then, an adversarial regularization is applied to the segmentation tasks of the unbalanced atrial targets for making a consistent optimization. It mainly forces the estimated joint distribution of LA and atrial scars to match the real ones. We evaluated the performance of our JAS-GAN on a 3D LGE CMR dataset with 192 scans. Compared with the state-of-the-art methods, our proposed approach yielded better segmentation performance (Average Dice Similarity Coefficient (DSC) values of 0.946 and 0.821 for LA and atrial scars, respectively), which indicated the effectiveness of our proposed approach for segmenting unbalanced atrial targets.

摘要

自动且准确地分割左心房 (LA) 和晚期钆增强心脏磁共振 (LGE CMR) 图像中的心房瘢痕对于量化心房瘢痕非常重要。由于 LA 和心房瘢痕的体积差异较大(不平衡的心房目标),之前的心房瘢痕量化依赖于 LA 和心房瘢痕的两阶段分割。在本文中,我们提出了一种级联生成对抗网络,即 JAS-GAN,以端到端的方式自动且准确地分割 LGE CMR 图像中的不平衡心房目标。首先,JAS-GAN 研究了自适应注意级联,以自动关联不平衡心房目标的分割任务。自适应注意级联主要模拟两个不平衡心房目标的包含关系,其中估计的 LA 充当注意力图,自适应地粗略关注小的心房瘢痕。然后,对抗正则化应用于不平衡心房目标的分割任务,以进行一致的优化。它主要迫使估计的 LA 和心房瘢痕的联合分布与真实分布相匹配。我们在一个包含 192 个扫描的 3D LGE CMR 数据集上评估了我们的 JAS-GAN 的性能。与最先进的方法相比,我们的方法具有更好的分割性能(LA 和心房瘢痕的平均 Dice 相似系数 (DSC) 值分别为 0.946 和 0.821),这表明了我们的方法在分割不平衡心房目标方面的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验