Suppr超能文献

LASSNet:用于左心房分割和瘢痕定量的四步深度神经网络。

LASSNet: A Four Steps Deep Neural Network for Left Atrial Segmentation and Scar Quantification.

作者信息

Lefebvre Arthur L, Yamamoto Carolyna A P, Shade Julie K, Bradley Ryan P, Yu Rebecca A, Ali Rheeda L, Popescu Dan M, Prakosa Adityo, Kholmovski Eugene G, Trayanova Natalia A

机构信息

Faculté polytechnique de Mons, UMONS, Mons, Belgium.

Alliance for Cardiovascular Diagnostic and Treatment Innovation (ADVANCE), Johns Hopkins University, Baltimore, MD, USA.

出版信息

Left Atr Scar Quantif Segm (2022). 2023;13586:1-15. doi: 10.1007/978-3-031-31778-1_1. Epub 2023 May 5.

Abstract

Accurate quantification of left atrium (LA) scar in patients with atrial fibrillation is essential to guide successful ablation strategies. Prior to LA scar quantification, a proper LA cavity segmentation is required to ensure exact location of scar. Both tasks can be extremely time-consuming and are subject to inter-observer disagreements when done manually. We developed and validated a deep neural network to automatically segment the LA cavity and the LA scar. The global architecture uses a multi-network sequential approach in two stages which segment the LA cavity and the LA Scar. Each stage has two steps: a region of interest Neural Network and a refined segmentation network. We analysed the performances of our network according to different parameters and applied data triaging. 200+ late gadolinium enhancement magnetic resonance images were provided by the LAScarQS 2022 Challenge. Finally, we compared our performances for scar quantification to the literature and demonstrated improved performances.

摘要

准确量化心房颤动患者的左心房(LA)瘢痕对于指导成功的消融策略至关重要。在进行LA瘢痕量化之前,需要进行适当的LA腔分割以确保瘢痕的准确位置。这两项任务都可能极其耗时,并且手动完成时会存在观察者间的分歧。我们开发并验证了一种深度神经网络,以自动分割LA腔和LA瘢痕。整体架构在两个阶段采用多网络顺序方法,分别分割LA腔和LA瘢痕。每个阶段有两个步骤:感兴趣区域神经网络和精细分割网络。我们根据不同参数分析了网络的性能并应用了数据分类。LAScarQS 2022挑战赛提供了200多张延迟钆增强磁共振图像。最后,我们将瘢痕量化的性能与文献进行了比较,并证明了性能的提升。

相似文献

本文引用的文献

3
Generalised Dice Overlap as a Deep Learning Loss Function for Highly Unbalanced Segmentations.广义骰子重叠作为高度不平衡分割的深度学习损失函数
Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2017). 2017;2017:240-248. doi: 10.1007/978-3-319-67558-9_28. Epub 2017 Sep 9.
8
Deep Learning for Cardiac Image Segmentation: A Review.用于心脏图像分割的深度学习:综述
Front Cardiovasc Med. 2020 Mar 5;7:25. doi: 10.3389/fcvm.2020.00025. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验