School of Data Science, Fudan University, Shanghai, China; School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; School of Biomedical Engineering and Imaging Sciences, Kings College London, London, UK.
School of Biomedical Engineering and Imaging Sciences, Kings College London, London, UK; Technical University Munich, Munich, Germany.
Med Image Anal. 2022 Feb;76:102303. doi: 10.1016/j.media.2021.102303. Epub 2021 Nov 16.
Left atrial (LA) and atrial scar segmentation from late gadolinium enhanced magnetic resonance imaging (LGE MRI) is an important task in clinical practice. The automatic segmentation is however still challenging due to the poor image quality, the various LA shapes, the thin wall, and the surrounding enhanced regions. Previous methods normally solved the two tasks independently and ignored the intrinsic spatial relationship between LA and scars. In this work, we develop a new framework, namely AtrialJSQnet, where LA segmentation, scar projection onto the LA surface, and scar quantification are performed simultaneously in an end-to-end style. We propose a mechanism of shape attention (SA) via an implicit surface projection to utilize the inherent correlation between LA cavity and scars. In specific, the SA scheme is embedded into a multi-task architecture to perform joint LA segmentation and scar quantification. Besides, a spatial encoding (SE) loss is introduced to incorporate continuous spatial information of the target in order to reduce noisy patches in the predicted segmentation. We evaluated the proposed framework on 60 post-ablation LGE MRIs from the MICCAI2018 Atrial Segmentation Challenge. Moreover, we explored the domain generalization ability of the proposed AtrialJSQnet on 40 pre-ablation LGE MRIs from this challenge and 30 post-ablation multi-center LGE MRIs from another challenge (ISBI2012 Left Atrium Fibrosis and Scar Segmentation Challenge). Extensive experiments on public datasets demonstrated the effect of the proposed AtrialJSQnet, which achieved competitive performance over the state-of-the-art. The relatedness between LA segmentation and scar quantification was explicitly explored and has shown significant performance improvements for both tasks. The code has been released via https://zmiclab.github.io/projects.html.
左心房 (LA) 和心房瘢痕的磁共振成像 (LGE MRI) 晚期钆增强分割是临床实践中的一项重要任务。然而,由于图像质量差、LA 形状各异、壁薄以及周围增强区域,自动分割仍然具有挑战性。以前的方法通常独立地解决这两个任务,忽略了 LA 和疤痕之间的内在空间关系。在这项工作中,我们开发了一种新的框架,即 AtrialJSQnet,其中 LA 分割、瘢痕在 LA 表面上的投影和瘢痕量化是端到端同时进行的。我们提出了一种通过隐式曲面投影的形状注意 (SA) 机制,以利用 LA 腔和瘢痕之间的固有相关性。具体来说,SA 方案被嵌入到一个多任务架构中,以执行联合 LA 分割和瘢痕量化。此外,引入了空间编码 (SE) 损失,以结合目标的连续空间信息,从而减少预测分割中的噪声斑块。我们在来自 MICCAI2018 心房分割挑战赛的 60 个消融后 LGE MRI 上评估了所提出的框架。此外,我们探索了所提出的 AtrialJSQnet 在来自该挑战赛的 40 个消融前 LGE MRI 和来自另一个挑战赛 (ISBI2012 左心房纤维化和瘢痕分割挑战赛) 的 30 个消融后多中心 LGE MRI 上的域泛化能力。在公共数据集上的广泛实验证明了所提出的 AtrialJSQnet 的有效性,它在性能上超过了最先进的方法。LA 分割和瘢痕量化之间的相关性被明确地探索出来,并且这两个任务的性能都得到了显著的提高。该代码已通过 https://zmiclab.github.io/projects.html 发布。