Suppr超能文献

使用YOLO和混合高效层聚合网络实时增强猪行为检测

Enhanced Swine Behavior Detection with YOLOs and a Mixed Efficient Layer Aggregation Network in Real Time.

作者信息

Lee Ji-Hyeon, Choi Yo Han, Lee Han-Sung, Park Hyun Ju, Hong Jun Seon, Lee Ji Hwan, Sa Soo Jin, Kim Yong Min, Kim Jo Eun, Jeong Yong Dae, Cho Hyun-Chong

机构信息

Interdisciplinary Graduate Program for BIT Medical Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea.

Swine Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea.

出版信息

Animals (Basel). 2024 Nov 23;14(23):3375. doi: 10.3390/ani14233375.

Abstract

Effective livestock management has become essential owing to an aging workforce and the growth of large-scale farming operations in the agricultural industry. Conventional monitoring methods, primarily reliant on manual observation, are increasingly reaching their limits, necessitating the development of innovative automated solutions. This study developed a system, termed mixed-ELAN, for real-time sow and piglet behavior detection using an extended ELAN architecture with diverse kernel sizes. The standard convolution operations within the ELAN framework were replaced with MixConv using diverse kernel sizes to enhance feature learning capabilities. To ensure high reliability, a performance evaluation of all techniques was conducted using a k-fold cross-validation (k = 3). The proposed architecture was applied to YOLOv7 and YOLOv9, yielding improvements of 1.5% and 2%, with mean average precision scores of 0.805 and 0.796, respectively, compared with the original models. Both models demonstrated significant performance improvements in detecting behaviors critical for piglet growth and survival, such as crushing and lying down, highlighting the effectiveness of the proposed architecture. These advances highlight the potential of AI and computer vision in agriculture, as well as the system's benefits for improving animal welfare and farm management efficiency. The proposed architecture enhances the real-time monitoring and understanding of livestock behavior, establishing improved benchmarks for smart farming technologies and enabling further innovation in livestock management.

摘要

由于农业劳动力老龄化和农业产业中大规模养殖作业的增长,有效的牲畜管理变得至关重要。传统的监测方法主要依赖人工观察,正日益达到其极限,因此需要开发创新的自动化解决方案。本研究开发了一种名为混合ELAN的系统,用于使用具有不同内核大小的扩展ELAN架构进行实时母猪和仔猪行为检测。ELAN框架内的标准卷积操作被使用不同内核大小的MixConv取代,以增强特征学习能力。为确保高可靠性,使用k折交叉验证(k = 3)对所有技术进行了性能评估。所提出的架构应用于YOLOv7和YOLOv9,与原始模型相比,平均精度得分分别为0.805和0.796,改进了1.5%和2%。两个模型在检测对仔猪生长和存活至关重要的行为(如挤压和躺下)方面都表现出显著的性能提升,突出了所提出架构的有效性。这些进展凸显了人工智能和计算机视觉在农业中的潜力,以及该系统对改善动物福利和农场管理效率的益处。所提出的架构增强了对牲畜行为的实时监测和理解,为智能养殖技术建立了改进的基准,并推动了牲畜管理的进一步创新。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8fa/11639920/755af85cc179/animals-14-03375-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验