文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用计算机视觉量化群体饲养动物之间的相互作用,以得出社会等级:以商业群体饲养的兔子为例。

Quantifying agonistic interactions between group-housed animals to derive social hierarchies using computer vision: a case study with commercially group-housed rabbits.

机构信息

Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, 9000, Gent, Belgium.

Animal Sciences Unit, ILVO, Scheldeweg 68, 9090, Melle, Belgium.

出版信息

Sci Rep. 2023 Aug 29;13(1):14138. doi: 10.1038/s41598-023-41104-6.


DOI:10.1038/s41598-023-41104-6
PMID:37644059
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10465565/
Abstract

In recent years, computer vision has contributed significantly to the study of farm animal behavior. In complex environments such as commercial farms, however, the automated detection of social behavior and specific interactions between animals can be improved. The present study addresses the automated detection of agonistic interactions between caged animals in a complex environment, relying solely on computer vision. An automated pipeline including group-level temporal action segmentation, object detection, object tracking and rule-based action classification for the detection of agonistic interactions was developed and extensively validated at a level unique in the field. Comparing with observations made by human observers, our pipeline reaches 77% precision and 85% recall using a 5-min tolerance interval for the detection of agonistic interactions. Results obtained using this pipeline allow to construct time-dependent socio-matrices of a group of animals and derive metrics on the dominance hierarchy in a semi-automated manner. Group-housed breeding rabbits (does) with their litters in commercial farms are the main use-case in this work, but the idea is probably also applicable to other social farm animals.

摘要

近年来,计算机视觉在研究农场动物行为方面做出了重大贡献。然而,在商业农场等复杂环境中,动物之间的社会行为和特定互动的自动检测仍有待提高。本研究旨在仅依靠计算机视觉,自动检测复杂环境中笼养动物之间的攻击性行为。我们开发了一个自动化的流水线,包括群体级别的时间动作分割、目标检测、目标跟踪和基于规则的动作分类,用于检测攻击性行为,并在该领域中进行了广泛的验证。与人类观察者的观察结果相比,我们的流水线在检测攻击性行为时使用 5 分钟的容忍间隔,可达到 77%的精度和 85%的召回率。使用该流水线获得的结果允许以半自动方式构建一组动物的时间相关社会矩阵,并推导出关于优势等级的度量。本工作的主要应用案例是商业农场中群养繁殖兔(母兔)及其幼崽,但这个想法可能也适用于其他社交农场动物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9359/10465565/8ac837f2e187/41598_2023_41104_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9359/10465565/40f8741404c4/41598_2023_41104_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9359/10465565/39d2a6bdadaa/41598_2023_41104_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9359/10465565/608b709093bf/41598_2023_41104_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9359/10465565/38c0b5f34e01/41598_2023_41104_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9359/10465565/b39c99c80219/41598_2023_41104_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9359/10465565/3ab01c8e11e9/41598_2023_41104_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9359/10465565/8ac837f2e187/41598_2023_41104_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9359/10465565/40f8741404c4/41598_2023_41104_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9359/10465565/39d2a6bdadaa/41598_2023_41104_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9359/10465565/608b709093bf/41598_2023_41104_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9359/10465565/38c0b5f34e01/41598_2023_41104_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9359/10465565/b39c99c80219/41598_2023_41104_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9359/10465565/3ab01c8e11e9/41598_2023_41104_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9359/10465565/8ac837f2e187/41598_2023_41104_Fig7_HTML.jpg

相似文献

[1]
Quantifying agonistic interactions between group-housed animals to derive social hierarchies using computer vision: a case study with commercially group-housed rabbits.

Sci Rep. 2023-8-29

[2]
Automatic detection of feeding- and drinking-related agonistic behavior and dominance in dairy cows.

J Dairy Sci. 2019-8-7

[3]
Novel competition test for food rewards reveals stable dominance status in adult male rats.

Sci Rep. 2021-7-16

[4]
Cage enrichment to minimize aggression in part-time group-housed female breeding rabbits.

Front Vet Sci. 2024-6-4

[5]
Pattern of social interactions after group integration: a possibility to keep stallions in group.

PLoS One. 2013-1-30

[6]
Assessing the reliability of an automated method for measuring dominance hierarchy in non-human primates.

Primates. 2021-7

[7]
Social dominance hierarchy type and rank contribute to phenotypic variation within cages of laboratory mice.

Sci Rep. 2019-9-20

[8]
Mouse Social Interaction Test (MoST): a quantitative computer automated analysis of behavior.

J Neural Transm (Vienna). 2017-1

[9]
Social organization in caged layers: the peck order revisited.

Poult Sci. 1988-7

[10]
Agonism and dominance in female blue monkeys.

Am J Primatol. 2015-12

引用本文的文献

[1]
Temporal action localisation in video data containing rabbit behavioural patterns.

Sci Rep. 2025-2-17

[2]
Environmental Enrichment in Rabbit Husbandry: Comparative Impacts on Performance and Welfare.

Animals (Basel). 2024-8-15

[3]
Cage enrichment to minimize aggression in part-time group-housed female breeding rabbits.

Front Vet Sci. 2024-6-4

本文引用的文献

[1]
An overview of Human Action Recognition in sports based on Computer Vision.

Heliyon. 2022-6-5

[2]
Deep-learning based identification, tracking, pose estimation, and behavior classification of interacting primates and mice in complex environments.

Nat Mach Intell. 2022-4

[3]
Multi-animal pose estimation, identification and tracking with DeepLabCut.

Nat Methods. 2022-4

[4]
SLEAP: A deep learning system for multi-animal pose tracking.

Nat Methods. 2022-4

[5]
Pig-Posture Recognition Based on Computer Vision: Dataset and Exploration.

Animals (Basel). 2021-4-30

[6]
SciPy 1.0: fundamental algorithms for scientific computing in Python.

Nat Methods. 2020-2-3

[7]
Recording behaviour of indoor-housed farm animals automatically using machine vision technology: A systematic review.

PLoS One. 2019-12-23

[8]
A computer vision for animal ecology.

J Anim Ecol. 2017-11-29

[9]
A practical guide for inferring reliable dominance hierarchies and estimating their uncertainty.

J Anim Ecol. 2017-11-27

[10]
The rabbit: a diurnal or a nocturnal animal?

J Exp Anim Sci. 1991

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索