Suppr超能文献

利用 VISTA 实现无标记蛋白聚集体的高空间分辨率成像

High spatial-resolution imaging of label-free protein aggregates by VISTA.

机构信息

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA.

出版信息

Analyst. 2021 Jun 28;146(13):4135-4145. doi: 10.1039/d1an00060h.

Abstract

Amyloid aggregation, formed by aberrant proteins, is a pathological hallmark for neurodegenerative diseases, including Alzheimer's disease and Huntington's disease. High-resolution holistic mapping of the fine structures from these aggregates should facilitate our understanding of their pathological roles. Here, we achieved label-free high-resolution imaging of the polyQ and the amyloid-beta (Aβ) aggregates in cells and tissues utilizing a sample-expansion stimulated Raman strategy. We further focused on characterizing the Aβ plaques in 5XFAD mouse brain tissues. 3D volumetric imaging enabled visualization of the whole plaques, resolving both the fine protein filaments and the surrounding components. Coupling our expanded label-free Raman imaging with machine learning, we obtained specific segmentation of aggregate cores, peripheral filaments together with cell nuclei and blood vessels by pre-trained convolutional neural network models. Combining with 2-channel fluorescence imaging, we achieved a 6-color holistic view of the same sample. This ability for precise and multiplex high-resolution imaging of the protein aggregates and their micro-environment without the requirement of labeling would open new biomedical applications.

摘要

淀粉样蛋白聚集物由异常蛋白质形成,是神经退行性疾病(包括阿尔茨海默病和亨廷顿病)的病理标志。对这些聚集物的精细结构进行高分辨率整体测绘,有助于我们了解它们的病理作用。在这里,我们利用样品扩展刺激拉曼策略,实现了对细胞和组织中聚 Q 和淀粉样 β(Aβ)聚集物的无标记高分辨率成像。我们进一步专注于表征 5XFAD 小鼠脑组织中的 Aβ斑块。3D 体积成像使我们能够可视化整个斑块,解析出精细的蛋白质丝和周围成分。通过预先训练的卷积神经网络模型,我们将扩展的无标记拉曼成像与机器学习相结合,获得了对聚集核、外围丝以及细胞核和血管的特定分割。结合双通道荧光成像,我们实现了对同一样本的 6 种颜色整体观察。这种无需标记即可精确、多路复用高分辨率成像蛋白质聚集物及其微环境的能力将开辟新的生物医学应用。

相似文献

1
High spatial-resolution imaging of label-free protein aggregates by VISTA.
Analyst. 2021 Jun 28;146(13):4135-4145. doi: 10.1039/d1an00060h.
6
Butyrylcholinesterase-knockout reduces fibrillar β-amyloid and conserves FDG retention in 5XFAD mouse model of Alzheimer's disease.
Brain Res. 2017 Sep 15;1671:102-110. doi: 10.1016/j.brainres.2017.07.009. Epub 2017 Jul 17.
9
10
Label-free imaging of amyloid plaques in Alzheimer's disease with stimulated Raman scattering microscopy.
Sci Adv. 2018 Nov 16;4(11):eaat7715. doi: 10.1126/sciadv.aat7715. eCollection 2018 Nov.

引用本文的文献

1
High-Throughput Volumetric Mapping Facilitated by Active Tissue SHRINK.
Small Methods. 2025 Apr 8:e2500382. doi: 10.1002/smtd.202500382.
3
Seeing is Believing: Developing Multimodal Metabolic Insights at the Molecular Level.
ACS Cent Sci. 2024 Mar 21;10(4):758-774. doi: 10.1021/acscentsci.3c01438. eCollection 2024 Apr 24.
4
Label-free identification of protein aggregates using deep learning.
Nat Commun. 2023 Nov 28;14(1):7816. doi: 10.1038/s41467-023-43440-7.
5
Toward the Next Frontiers of Vibrational Bioimaging.
Chem Biomed Imaging. 2023 Mar 28;1(1):3-17. doi: 10.1021/cbmi.3c00004. eCollection 2023 Apr 24.
6
Bringing Vibrational Imaging to Chemical Biology with Molecular Probes.
ACS Chem Biol. 2022 Jul 15;17(7):1621-1637. doi: 10.1021/acschembio.2c00200. Epub 2022 Jun 30.
8
Super-Resolution Vibrational Imaging Using Expansion Stimulated Raman Scattering Microscopy.
Adv Sci (Weinh). 2022 Jul;9(20):e2200315. doi: 10.1002/advs.202200315. Epub 2022 May 6.
9
Label-Free Super-Resolution Imaging Techniques.
Annu Rev Anal Chem (Palo Alto Calif). 2022 Jun 13;15(1):37-55. doi: 10.1146/annurev-anchem-061020-014723. Epub 2022 Mar 22.

本文引用的文献

1
Super-resolution label-free volumetric vibrational imaging.
Nat Commun. 2021 Jun 15;12(1):3648. doi: 10.1038/s41467-021-23951-x.
2
Super-resolution Microscopy with Single Molecules in Biology and Beyond-Essentials, Current Trends, and Future Challenges.
J Am Chem Soc. 2020 Oct 21;142(42):17828-17844. doi: 10.1021/jacs.0c08178. Epub 2020 Oct 9.
3
Microglia modulate neurodegeneration in Alzheimer's and Parkinson's diseases.
Science. 2020 Oct 2;370(6512):66-69. doi: 10.1126/science.abb8587.
4
Investigating the Structure of Neurotoxic Protein Aggregates Inside Cells.
Trends Cell Biol. 2020 Dec;30(12):951-966. doi: 10.1016/j.tcb.2020.08.007. Epub 2020 Sep 24.
5
Disease-associated astrocytes in Alzheimer's disease and aging.
Nat Neurosci. 2020 Jun;23(6):701-706. doi: 10.1038/s41593-020-0624-8. Epub 2020 Apr 27.
6
Denoising of stimulated Raman scattering microscopy images via deep learning.
Biomed Opt Express. 2019 Jul 10;10(8):3860-3874. doi: 10.1364/BOE.10.003860. eCollection 2019 Aug 1.
7
Nanoscale structure of amyloid-β plaques in Alzheimer's disease.
Sci Rep. 2019 Mar 26;9(1):5181. doi: 10.1038/s41598-019-41443-3.
8
Raman Imaging of Small Biomolecules.
Annu Rev Biophys. 2019 May 6;48:347-369. doi: 10.1146/annurev-biophys-052118-115500. Epub 2019 Mar 20.
9
Expansion microscopy: principles and uses in biological research.
Nat Methods. 2019 Jan;16(1):33-41. doi: 10.1038/s41592-018-0219-4. Epub 2018 Dec 20.
10
Structural progression of amyloid-β Arctic mutant aggregation in cells revealed by multiparametric imaging.
J Biol Chem. 2019 Feb 1;294(5):1478-1487. doi: 10.1074/jbc.RA118.004511. Epub 2018 Nov 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验