Suppr超能文献

基于胶体纳米晶体的激光驱动半导体纳米线生长

Laser-Driven Growth of Semiconductor Nanowires from Colloidal Nanocrystals.

作者信息

Pandres Elena P, Crane Matthew J, Davis E James, Pauzauskie Peter J, Holmberg Vincent C

机构信息

Department of Chemical Engineering, University of Washington, Seattle, Washington 98195-1750, United States.

Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195-2120, United States.

出版信息

ACS Nano. 2021 May 25;15(5):8653-8662. doi: 10.1021/acsnano.1c00683. Epub 2021 May 5.

Abstract

Semiconductor nanowire production through vapor- and solution-based processes has propelled nanowire systems toward a wide range of technological applications. Although vapor-based nanowire syntheses enable precise control over nanowire composition and phase, they typically employ batch processes with specialized pressure management systems, limiting throughput. Solution-based nanowire growth processes have improved scalability but can require even more extensive pressure and temperature management systems. Here, we demonstrate a solution-based nanowire growth process that utilizes the large Young-Laplace interfacial surface pressures and collective heating effects of colloidal metal nanocrystals under irradiation to drive nanowire growth photothermally. Laser irradiation of a solution containing metal nanocrystals and semiconductor precursors facilitates rapid heating, precursor decomposition, and nanowire growth on a benchtop in simple glassware under standard conditions, potentially enabling a range of solution-based experiments including in-line combinatorial identification of optimized reaction parameters, measurements, and the production of nanowires with complex compositions.

摘要

通过基于气相和溶液的工艺生产半导体纳米线,已推动纳米线系统走向广泛的技术应用。尽管基于气相的纳米线合成能够精确控制纳米线的组成和相,但它们通常采用配备专门压力管理系统的间歇式工艺,限制了产量。基于溶液的纳米线生长工艺提高了可扩展性,但可能需要更广泛的压力和温度管理系统。在此,我们展示了一种基于溶液的纳米线生长工艺,该工艺利用胶体金属纳米晶体在辐照下的大杨氏-拉普拉斯界面表面压力和集体加热效应,通过光热驱动纳米线生长。在标准条件下,用激光照射含有金属纳米晶体和半导体前驱体的溶液,可在简单玻璃器皿的台面上实现快速加热、前驱体分解和纳米线生长,这有可能实现一系列基于溶液的实验,包括在线组合识别优化的反应参数、测量以及生产具有复杂组成的纳米线。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验