Tanjaya Nicholaus Kevin, Kaur Manpreet, Nagao Tadaaki, Ishii Satoshi
International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, 305-0044, Japan.
Faculty of Pure and Applied Physics, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan.
Nanophotonics. 2022 Jun 14;11(14):3375-3381. doi: 10.1515/nanoph-2022-0244. eCollection 2022 Jul.
Photothermal heating with metallic nanostructures has the unique property of generating heat at the nanoscale owing to plasmon resonances. In this study, the heat transfer of anodic aluminum oxides (AAOs) coated with plasmonic titanium nitride (TiN) of 80 nm thickness are experimentally, numerically, and analytically studied, wherein TiN photothermally generated heat. High optical absorptance and photothermal heating efficiency are observed for the samples with pore sizes in the range of 161-239 nm, and the sample with the pore size of 239 nm exhibits the highest absorptance and photothermal heating efficiency. In addition, the numerical and analytical heat transfer analyses using the effective thermal conductivities for AAO-TiN samples are in reasonable agreement with experimental results, indicating the validity of effective thermal conductivities, which consider the periodic nature. These results can be extended to design other optically absorbing periodic structures for photothermal heating applications.
由于等离子体共振,利用金属纳米结构进行光热加热具有在纳米尺度产生热量的独特特性。在本研究中,对涂覆有厚度为80nm的等离子体氮化钛(TiN)的阳极氧化铝(AAO)的热传递进行了实验、数值和分析研究,其中TiN通过光热产生热量。对于孔径在161 - 239nm范围内的样品,观察到高光学吸收率和光热加热效率,孔径为239nm的样品表现出最高的吸收率和光热加热效率。此外,使用AAO - TiN样品的有效热导率进行的数值和分析热传递分析与实验结果合理吻合,表明考虑周期性的有效热导率的有效性。这些结果可扩展到设计用于光热加热应用的其他光学吸收周期性结构。