Institute of Plant Biology, Biological Research Centre, Szeged, Temesvári krt. 62, H-6726 Szeged, Hungary.
Institute of Plant Biology, Biological Research Centre, Szeged, Temesvári krt. 62, H-6726 Szeged, Hungary; Doctoral School of Biology, University of Szeged, Közép fasor 52, H-6722 Szeged, Hungary.
Bioresour Technol. 2021 Aug;333:125217. doi: 10.1016/j.biortech.2021.125217. Epub 2021 Apr 27.
Photobiological hydrogen (H) production is a promising renewable energy source. HydA hydrogenases of green algae are efficient but O-sensitive and compete for electrons with CO-fixation. Recently, we established a photoautotrophic H production system based on anaerobic induction, where the Calvin-Benson cycle is inactive and O scavenged by an absorbent. Here, we employed thin layer cultures, resulting in a three-fold increase in H production relative to bulk CC-124 cultures (50 µg chlorophyll/ml, 350 µmol photons m s). Productivity was maintained when increasing the light intensity to 1000 µmol photons ms and the cell density to 150 µg chlorophyll/ml. Remarkably, the L159I-N230Y photosystem II mutant and the pgrl1 photosystem I cyclic electron transport mutant produced 50% more H than CC-124, while the pgr5 mutant generated 250% more (1.2 ml H/ml culture in six days). The photosynthetic apparatus of the pgr5 mutant and its in vitro HydA activity remained remarkably stable.
光生物产氢是一种很有前途的可再生能源。绿藻的 HydA 氢化酶虽然效率高,但对氧敏感,而且与 CO 固定竞争电子。最近,我们建立了一种基于厌氧诱导的光自养产氢系统,其中卡尔文-本森循环不活跃,O 被吸收剂吸收。在这里,我们采用了薄层培养,与 CC-124 培养相比,产氢量增加了三倍(50 µg 叶绿素/ml,350 µmol 光子 m s)。当光强度增加到 1000 µmol 光子 ms 并将细胞密度增加到 150 µg 叶绿素/ml 时,生产力得以维持。值得注意的是,L159I-N230Y 光系统 II 突变体和 pgrl1 光系统 I 循环电子传递突变体比 CC-124 产生了 50%更多的 H,而 pgr5 突变体产生了 250%更多的 H(六天内产生 1.2 ml H/ml 培养物)。pgr5 突变体的光合装置及其体外 HydA 活性仍然非常稳定。