Suppr超能文献

冠状病毒感染的免疫反应:是敌是友?

The Immune Responses against Coronavirus Infections: Friend or Foe?

机构信息

Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.

Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.

出版信息

Int Arch Allergy Immunol. 2021;182(9):863-876. doi: 10.1159/000516038. Epub 2021 May 5.

Abstract

Coronaviruses (CoVs) were first discovered in the 1960s. Severe acute respiratory syndrome CoV-2 (SARS-CoV-2) has been identified as the cause of COVID-19, which spread throughout China and subsequently, across the world. As COVID-19 causes serious public health concerns across the world, investigating the characteristics of SARS-CoV-2 and its interaction with the host immune responses may provide a clearer picture of how the pathogen causes disease in some individuals. Interestingly, SARS-CoV-2 has 80% sequence homology with SARS-CoV-1 and 96-98% homology with CoVs isolated from bats. Therefore, the experience acquired in SARS and Middle East Respiratory Syndrome (MERS) epidemics may improve our understanding of the immune response and immunopathological changes in COVID-19 patients. In the present paper, we have reviewed the immune responses (including the innate and adaptive immunities) to SARS-CoV, MERS-CoV, and SARS-CoV-2, so as to improve our understanding of the concept of the COVID-19 disease, which will be helpful in developing vaccines and medications for treating the COVID-19 patients.

摘要

冠状病毒(CoVs)于 20 世纪 60 年代首次被发现。严重急性呼吸综合征冠状病毒 2 型(SARS-CoV-2)已被确定为 COVID-19 的病因,该病毒在中国各地传播,随后在全球范围内传播。由于 COVID-19 在全球范围内引起严重的公共卫生关注,因此研究 SARS-CoV-2 的特征及其与宿主免疫反应的相互作用可能会更清楚地了解病原体如何在某些个体中引起疾病。有趣的是,SARS-CoV-2 与 SARS-CoV-1 具有 80%的序列同源性,与蝙蝠中分离出的冠状病毒具有 96-98%的同源性。因此,在 SARS 和中东呼吸综合征(MERS)流行期间获得的经验可能会增进我们对 COVID-19 患者免疫反应和免疫病理变化的理解。在本文中,我们回顾了对 SARS-CoV、MERS-CoV 和 SARS-CoV-2 的免疫反应(包括先天免疫和适应性免疫),以便更好地理解 COVID-19 疾病的概念,这将有助于为 COVID-19 患者开发疫苗和药物。

相似文献

1
The Immune Responses against Coronavirus Infections: Friend or Foe?
Int Arch Allergy Immunol. 2021;182(9):863-876. doi: 10.1159/000516038. Epub 2021 May 5.
2
Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic.
Asian Pac J Allergy Immunol. 2020 Mar;38(1):1-9. doi: 10.12932/AP-200220-0772.
3
Similarities and Dissimilarities of COVID-19 and Other Coronavirus Diseases.
Annu Rev Microbiol. 2021 Oct 8;75:19-47. doi: 10.1146/annurev-micro-110520-023212. Epub 2021 Jan 25.
5
Innate immune evasion by SARS-CoV-2: Comparison with SARS-CoV.
Rev Med Virol. 2020 Nov;30(6):1-9. doi: 10.1002/rmv.2135. Epub 2020 Jul 30.
6
Comparison of Immune Response between SARS, MERS, and COVID-19 Infection, Perspective on Vaccine Design and Development.
Biomed Res Int. 2021 Jan 22;2021:8870425. doi: 10.1155/2021/8870425. eCollection 2021.
7
LY6E impairs coronavirus fusion and confers immune control of viral disease.
Nat Microbiol. 2020 Nov;5(11):1330-1339. doi: 10.1038/s41564-020-0769-y. Epub 2020 Jul 23.
8
Immunological Aspects of SARS-CoV-2 Infection and the Putative Beneficial Role of Vitamin-D.
Int J Mol Sci. 2021 May 16;22(10):5251. doi: 10.3390/ijms22105251.
9
The immune response and immune evasion characteristics in SARS-CoV, MERS-CoV, and SARS-CoV-2: Vaccine design strategies.
Int Immunopharmacol. 2021 Mar;92:107051. doi: 10.1016/j.intimp.2020.107051. Epub 2020 Sep 29.
10
The 2020 Pandemic: Current SARS-CoV-2 Vaccine Development.
Front Immunol. 2020 Aug 19;11:1880. doi: 10.3389/fimmu.2020.01880. eCollection 2020.

引用本文的文献

2
How immune breakthroughs could slow disease progression and improve prognosis in COVID-19 patients: a retrospective study.
Front Immunol. 2023 Oct 23;14:1246751. doi: 10.3389/fimmu.2023.1246751. eCollection 2023.
6
COVID-19 diagnostics: Molecular biology to nanomaterials.
Clin Chim Acta. 2023 Jan 1;538:139-156. doi: 10.1016/j.cca.2022.11.017. Epub 2022 Nov 18.
7
The influence of COVID-19 infection-associated immune response on the female reproductive system†.
Biol Reprod. 2023 Feb 13;108(2):172-182. doi: 10.1093/biolre/ioac187.
8
Clinical, Virological, and Pathological Profile of Patients Who Died of COVID-19: An Autopsy-Based Study From India.
Cureus. 2022 Mar 27;14(3):e23538. doi: 10.7759/cureus.23538. eCollection 2022 Mar.
9
The direct and indirect effects of bioactive compounds against coronavirus.
Food Front. 2022 Mar;3(1):96-123. doi: 10.1002/fft2.119. Epub 2021 Dec 8.

本文引用的文献

1
Pathogenic T-cells and inflammatory monocytes incite inflammatory storms in severe COVID-19 patients.
Natl Sci Rev. 2020 Jun;7(6):998-1002. doi: 10.1093/nsr/nwaa041. Epub 2020 Mar 13.
2
Maintaining Safety with SARS-CoV-2 Vaccines.
N Engl J Med. 2021 Feb 18;384(7):643-649. doi: 10.1056/NEJMra2035343. Epub 2020 Dec 30.
3
COVID-19 vaccine: A recent update in pipeline vaccines, their design and development strategies.
Eur J Pharmacol. 2021 Feb 5;892:173751. doi: 10.1016/j.ejphar.2020.173751. Epub 2020 Nov 25.
4
A molecular cell atlas of the human lung from single-cell RNA sequencing.
Nature. 2020 Nov;587(7835):619-625. doi: 10.1038/s41586-020-2922-4. Epub 2020 Nov 18.
5
Protective immunity against COVID-19: Unravelling the evidences for humoral vs. cellular components.
Travel Med Infect Dis. 2021 Jan-Feb;39:101911. doi: 10.1016/j.tmaid.2020.101911. Epub 2020 Nov 10.
7
Type I Interferon Susceptibility Distinguishes SARS-CoV-2 from SARS-CoV.
J Virol. 2020 Nov 9;94(23). doi: 10.1128/JVI.01410-20.
8
Immunological considerations for COVID-19 vaccine strategies.
Nat Rev Immunol. 2020 Oct;20(10):615-632. doi: 10.1038/s41577-020-00434-6. Epub 2020 Sep 4.
10
COVID-19 Vaccine: A comprehensive status report.
Virus Res. 2020 Oct 15;288:198114. doi: 10.1016/j.virusres.2020.198114. Epub 2020 Aug 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验