Suppr超能文献

具有函数性混杂因素的因果估计

Causal Estimation with Functional Confounders.

作者信息

Puli Aahlad, Perotte Adler J, Ranganath Rajesh

机构信息

Computer Science, New York University, New York, NY 10011.

Biomedical Informatics, Columbia University, New York, NY 10032.

出版信息

Adv Neural Inf Process Syst. 2020 Dec;33:5115-5125.

Abstract

Causal inference relies on two fundamental assumptions: and . We study causal inference when the true confounder value can be expressed as a function of the observed data; we call this setting EFC. In this setting ignorability is satisfied, however positivity is violated, and causal inference is impossible in general. We consider two scenarios where causal effects are estimable. First, we discuss interventions on a part of the treatment called and a sufficient condition for effect estimation of these interventions called . Second, we develop conditions for nonparametric effect estimation based on the gradient fields of the functional confounder and the true outcome function. To estimate effects under these conditions, we develop Level-set Orthogonal Descent Estimation (LODE). Further, we prove error bounds on LODE's effect estimates, evaluate our methods on simulated and real data, and empirically demonstrate the value of EFC.

摘要

因果推断依赖于两个基本假设

和 。当真实混杂因素值可以表示为观测数据的函数时,我们研究因果推断;我们将这种情况称为EFC。在这种情况下,可忽略性得到满足,但正性被违反,一般来说因果推断是不可能的。我们考虑两种因果效应可估计的情况。首先,我们讨论对称为 的部分处理的干预以及这些干预效应估计的一个充分条件,称为 。其次,我们基于函数混杂因素和真实结果函数的梯度场,为非参数效应估计制定条件。为了在这些条件下估计效应,我们开发了水平集正交下降估计(LODE)。此外,我们证明了LODE效应估计的误差界,在模拟数据和真实数据上评估我们的方法,并通过实证证明了EFC的价值。

相似文献

1
Causal Estimation with Functional Confounders.
Adv Neural Inf Process Syst. 2020 Dec;33:5115-5125.
2
Identification and estimation of causal effects in the presence of confounded principal strata.
Stat Med. 2024 Sep 30;43(22):4372-4387. doi: 10.1002/sim.10175. Epub 2024 Jul 29.
3
Identifiability of causal effects with multiple causes and a binary outcome.
Biometrika. 2022 Mar;109(1):265-272. doi: 10.1093/biomet/asab016. Epub 2021 Mar 12.
4
Augmented Weighted Estimators Dealing with Practical Positivity Violation to Causal inferences in a Random Coefficient Model.
Psychometrika. 2019 Jun;84(2):447-467. doi: 10.1007/s11336-018-09657-y. Epub 2019 Mar 15.
5
Practice of causal inference with the propensity of being zero or one: assessing the effect of arbitrary cutoffs of propensity scores.
Commun Stat Appl Methods. 2016 Jan;23(1):1-20. doi: 10.5351/CSAM.2016.23.1.001. Epub 2016 Jan 31.
8
Selective ignorability assumptions in causal inference.
Int J Biostat. 2010;6(2):Article 11. doi: 10.2202/1557-4679.1199.
9
Propensity Score-Based Methods versus MTE-Based Methods in Causal Inference: Identification, Estimation, and Application.
Sociol Methods Res. 2016 Feb;45(1):3-40. doi: 10.1177/0049124114555199. Epub 2014 Nov 3.

本文引用的文献

1
10 Years of GWAS Discovery: Biology, Function, and Translation.
Am J Hum Genet. 2017 Jul 6;101(1):5-22. doi: 10.1016/j.ajhg.2017.06.005.
2
Second-generation PLINK: rising to the challenge of larger and richer datasets.
Gigascience. 2015 Feb 25;4:7. doi: 10.1186/s13742-015-0047-8. eCollection 2015.
3
Inflammatory bowel disease and celiac disease: overlaps and differences.
World J Gastroenterol. 2014 May 7;20(17):4846-56. doi: 10.3748/wjg.v20.i17.4846.
4
FaST linear mixed models for genome-wide association studies.
Nat Methods. 2011 Sep 4;8(10):833-5. doi: 10.1038/nmeth.1681.
6
Multiple common variants for celiac disease influencing immune gene expression.
Nat Genet. 2010 Apr;42(4):295-302. doi: 10.1038/ng.543. Epub 2010 Feb 28.
7
Potential etiologic and functional implications of genome-wide association loci for human diseases and traits.
Proc Natl Acad Sci U S A. 2009 Jun 9;106(23):9362-7. doi: 10.1073/pnas.0903103106. Epub 2009 May 27.
9
Newly identified genetic risk variants for celiac disease related to the immune response.
Nat Genet. 2008 Apr;40(4):395-402. doi: 10.1038/ng.102. Epub 2008 Mar 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验