Suppr超能文献

具有多个原因和二元结果的因果效应的可识别性。

Identifiability of causal effects with multiple causes and a binary outcome.

作者信息

Kong Dehan, Yang Shu, Wang Linbo

机构信息

Department of Statistical Sciences, University of Toronto,700 University Avenue, Toronto, Ontario M5G 1X6, Canada.

Department of Statistics, North Carolina State University, 2311 Stinson Drive, Raleigh, North Carolina 27695, U.S.A.

出版信息

Biometrika. 2022 Mar;109(1):265-272. doi: 10.1093/biomet/asab016. Epub 2021 Mar 12.

Abstract

Unobserved confounding presents a major threat to causal inference in observational studies. Recently, several authors have suggested that this problem could be overcome in a shared confounding setting where multiple treatments are independent given a common latent confounder. It has been shown that under a linear Gaussian model for the treatments,the causal effect is not identifiable without parametric assumptions on the outcome model. In this note, we show that the causal effect is indeed identifiable if we assume a general binary choice model for the outcome with a non-probit link. Our identification approach is based on the incongruence between Gaussianity of the treatments and latent confounder and non-Gaussianity of a latent outcome variable. We further develop a two-step likelihood-based estimation procedure.

摘要

未观察到的混杂因素对观察性研究中的因果推断构成了重大威胁。最近,几位作者提出,在一种共享混杂因素的情况下,这个问题可以得到解决,即给定一个共同的潜在混杂因素时,多种治疗方法是相互独立的。研究表明,在治疗方法的线性高斯模型下,如果不对结果模型做参数假设,因果效应是无法识别的。在本注释中,我们表明,如果我们假设结果为一般二元选择模型且具有非概率链接,那么因果效应确实是可识别的。我们的识别方法基于治疗方法和潜在混杂因素的高斯性与潜在结果变量的非高斯性之间的不一致。我们进一步开发了一种基于似然的两步估计程序。

相似文献

1
Identifiability of causal effects with multiple causes and a binary outcome.
Biometrika. 2022 Mar;109(1):265-272. doi: 10.1093/biomet/asab016. Epub 2021 Mar 12.
2
Identification of causal effects with latent confounding and classical additive errors in treatment.
Biom J. 2018 May;60(3):498-515. doi: 10.1002/bimj.201700048. Epub 2018 Mar 13.
3
Sensitivity analysis of unmeasured confounding in causal inference based on exponential tilting and super learner.
J Appl Stat. 2021 Nov 10;50(3):744-760. doi: 10.1080/02664763.2021.1999398. eCollection 2023.
4
Assessing the impact of unmeasured confounding for binary outcomes using confounding functions.
Int J Epidemiol. 2017 Aug 1;46(4):1303-1311. doi: 10.1093/ije/dyx023.
7
A note on the control function approach with an instrumental variable and a binary outcome.
Epidemiol Methods. 2014 Dec;3(1):107-112. doi: 10.1515/em-2014-0009.
8
Multiply robust causal inference with double-negative control adjustment for categorical unmeasured confounding.
J R Stat Soc Series B Stat Methodol. 2020 Apr;82(2):521-540. doi: 10.1111/rssb.12361. Epub 2020 Jan 22.
9
Causal mediation analysis with sure outcomes of random events model.
Stat Med. 2021 Jul 30;40(17):3975-3989. doi: 10.1002/sim.9009. Epub 2021 Apr 26.
10
Joint mixed-effects models for causal inference with longitudinal data.
Stat Med. 2018 Feb 28;37(5):829-846. doi: 10.1002/sim.7567. Epub 2017 Dec 4.

本文引用的文献

1
Discrete Choice Models for Nonmonotone Nonignorable Missing Data: Identification and Inference.
Stat Sin. 2018 Oct;28(4):2069-2088. doi: 10.5705/ss.202016.0325.
2
Identifying Causal Effects With Proxy Variables of an Unmeasured Confounder.
Biometrika. 2018 Dec;105(4):987-993. doi: 10.1093/biomet/asy038. Epub 2018 Aug 13.
3
Bounded, efficient and multiply robust estimation of average treatment effects using instrumental variables.
J R Stat Soc Series B Stat Methodol. 2018 Jun;80(3):531-550. doi: 10.1111/rssb.12262. Epub 2017 Dec 18.
4
Instruments for causal inference: an epidemiologist's dream?
Epidemiology. 2006 Jul;17(4):360-72. doi: 10.1097/01.ede.0000222409.00878.37.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验