Trujillo-de Santiago Grissel, Lobo-Zegers Matías José, Montes-Fonseca Silvia Lorena, Zhang Yu Shrike, Alvarez Mario Moisés
Centro de Biotecnología-FEMSA, Tecnológico de Monterrey.
Departamento de Mecatrónica e Ingeniería Eléctrica, Campus Monterrey, CP 64849, Monterrey, Nuevo León, México.
Microphysiol Syst. 2018 Oct;2. doi: 10.21037/mps.2018.09.01. Epub 2018 Oct 16.
Overwhelming scientific evidence today confirms that the gut microbiota is a central player in human health. Knowledge about interactions between human gut microbiota and human health has evolved rapidly in the last decade, based on experimental work involving analysis of human fecal samples or animal models (mainly rodents). A more detailed and cost-effective description of this interplay is now being enabled by the use of in vitro systems (i.e., gut-microbiota-on-chip systems) that recapitulate key aspects of the interaction between microbiota and human cells. Here, we review recent examples of the design and use of pioneering on-chip platforms for the study of the cross-talk between representative members of human microbiota and human microtissues. In these systems, the combined use of state-of-the-art microfluidics, biomaterials, cell culture techniques, classical microbiology, and a touch of genetic expression profiling have converged for the development of gut-on-chip platforms capable of recreating key features of the interplay between human microbiota and host human tissues. We foresee that the integration of novel microfabrication techniques and stem cell technologies will further accelerate the development of more complex and physiologically relevant microbiota-on-chip platforms. In turn, this will foster the faster acquisition of knowledge regarding human microbiota and will enable important advances in the understanding of how to control or prevent disease.
如今,压倒性的科学证据证实肠道微生物群是人类健康的核心要素。基于涉及人类粪便样本分析或动物模型(主要是啮齿动物)的实验工作,在过去十年中,有关人类肠道微生物群与人类健康之间相互作用的知识迅速发展。现在,通过使用体外系统(即芯片上的肠道微生物群系统)能够更详细且经济高效地描述这种相互作用,该系统概括了微生物群与人类细胞之间相互作用的关键方面。在此,我们回顾了用于研究人类微生物群代表性成员与人类微组织之间相互作用的开创性芯片平台的设计和使用的最新实例。在这些系统中,最先进的微流体技术、生物材料、细胞培养技术、经典微生物学以及一点基因表达谱分析的结合,共同推动了能够重现人类微生物群与宿主人类组织之间相互作用关键特征的芯片上肠道平台的发展。我们预计,新型微制造技术和干细胞技术的整合将进一步加速更复杂且生理相关性更强的芯片上微生物群平台的开发。反过来,这将促进更快地获取有关人类微生物群的知识,并将在理解如何控制或预防疾病方面取得重要进展。