Suppr超能文献

近年来,用于检测黄曲霉毒素的可视化方法取得了新进展。

Recent progress in visual methods for aflatoxin detection.

机构信息

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.

Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China.

出版信息

Crit Rev Food Sci Nutr. 2022;62(28):7849-7865. doi: 10.1080/10408398.2021.1919595. Epub 2021 May 6.

Abstract

Aflatoxins (AFs) contamination in food and agricultural products poses a significant threat to human health. Sensitive and accurate detection of AFs provides a strong guarantee for ensuring food safety. Conventional chromatographic-based or mass spectrum methods, which rely on bulky instrument and skilled personnel, are not suitable for on-site surveillance. By contrast, visual detections which possess the merits of rapidity and sophisticated instrument-free present an excellent potential for the on-site detection of AFs. This review intends to summarize the latest development of visual methods for AFs detection, including paper-based tests, chromogenic reactions, and luminescent methods. Emerging technologies, like nanotechnology, DNAzymes, and aptamers combined with these visual methods are introduced. The basic principles, features, and application advantages of each type of visual methods are discussed. The biggest challenges and perspectives on their future trends are also addressed.

摘要

食品及农产品中黄曲霉毒素(AFs)的污染对人类健康构成了重大威胁。对 AFs 的灵敏、准确检测为保障食品安全提供了有力保障。传统的基于色谱或质谱的方法需要大型仪器和熟练的操作人员,不适合现场监测。相比之下,具有快速和无需复杂仪器优点的可视化检测方法在现场检测 AFs 方面具有巨大的潜力。本综述旨在总结 AFs 检测的最新可视化方法进展,包括基于纸的测试、显色反应和发光方法。介绍了与这些可视化方法结合的新兴技术,如纳米技术、DNA 酶和适体。讨论了每种类型可视化方法的基本原理、特点和应用优势。还讨论了它们未来趋势所面临的最大挑战和展望。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验