Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory Code 6900, Washington, DC 20375, United States.
National Research Council, 500 Fifth St NW, Washington, DC 20001, United States.
ACS Nano. 2021 May 25;15(5):9101-9110. doi: 10.1021/acsnano.1c02296. Epub 2021 May 6.
DNA nanotechnology has proven to be a powerful strategy for the bottom-up preparation of colloidal nanoparticle (NP) superstructures, enabling the coordination of multiple NPs with orientation and separation approaching nanometer precision. To do this, NPs are often conjugated with chemically modified, single-stranded (ss) DNA that can recognize complementary ssDNA on the DNA nanostructure. The limitation is that many NPs cannot be easily conjugated with ssDNA, and other conjugation strategies are expensive, inefficient, or reduce the specificity and/or precision with which NPs can be placed. As an alternative, the conjugation of nanoparticle-binding peptides and peptide nucleic acids (PNA) can produce peptide-PNA with distinct NP-binding and DNA-binding domains. Here, we demonstrate a simple application of this method to conjugate semiconductor quantum dots (QDs) directly to DNA nanostructures by means of a peptide-PNA with a six-histidine peptide motif that binds to the QD surface. With this method, we achieved greater than 90% capture efficiency for multiple QDs on a single DNA nanostructure while preserving both site specificity and precise spatial control of QD placement. Additionally, we investigated the effects of peptide-PNA charge on the efficacy of QD immobilization in suboptimal conditions. The results validate peptide-PNA as a viable alternative to ssDNA conjugation of NPs and warrant studies of other NP-binding peptides for peptide-PNA conjugation.
DNA 纳米技术已被证明是一种从下至上制备胶体纳米粒子(NP)超结构的强大策略,能够实现多个 NP 的配位,其方向和间距精度可达纳米级。为此,NP 通常与经过化学修饰的单链 DNA(ssDNA)偶联,ssDNA 可以识别 DNA 纳米结构上的互补 ssDNA。其局限性在于,许多 NP 很难与 ssDNA 偶联,而其他偶联策略则昂贵、低效,或降低 NP 放置的特异性和/或精度。作为替代方案,纳米粒子结合肽和肽核酸(PNA)的偶联可以产生具有独特 NP 结合和 DNA 结合结构域的肽-PNA。在这里,我们通过一种具有六组氨酸肽基序的肽-PNA 将 NP 结合肽和 PNA 偶联直接应用于 DNA 纳米结构,证明了这种方法的一个简单应用。该方法在单个 DNA 纳米结构上实现了超过 90%的多个 QD 的捕获效率,同时保持了 QD 放置的位点特异性和精确空间控制。此外,我们还研究了肽-PNA 电荷对在非最佳条件下 QD 固定化效果的影响。结果验证了肽-PNA 作为 NP 与 ssDNA 偶联的可行替代方案,并证明了其他 NP 结合肽用于肽-PNA 偶联的研究价值。