Suppr超能文献

心脏组织圆柱形束中的电位和电流分布。

Potential and current distributions in a cylindrical bundle of cardiac tissue.

作者信息

Henriquez C S, Trayanova N, Plonsey R

机构信息

Department of Biomedical Engineering, Duke University, Durham, North Carolina 27706.

出版信息

Biophys J. 1988 Jun;53(6):907-18. doi: 10.1016/S0006-3495(88)83172-2.

Abstract

The intracellular and interstitial potentials associated with each cell or fiber in multicellular preparations carrying a uniformly propagating wave are important for characterizing the electrophysiological behavior of the preparation and in particular, for evaluating the source contributed by each fiber. The aforementioned potentials depend on a number of factors including the conductivities characterizing the intracellular, interstitial, and extracellular domains, the thickness of the tissue, and the distance (depth) of the field point from the surface of the tissue. A model study is presented describing the extracellular and interstitial potential distribution and current flow in a cylindrical bundle of cardiac muscle arising from a planar wavefront. For simplicity, the bundle is considered as a bidomain. Using typical values of conductivity, the results show that the intracellular and interstitial potential of fibers near the center of a very large bundle (greater than 10 mm) may be approximated by the potentials of a single fiber surrounded by a limited extracellular space (a fiber in oil), hence justifying a core-conductor model. For smaller bundles, the peak interstitial potential is less than that predicted by the core-conductor model but still large enough to affect the overall source strength. The magnitude of the source strength is greatest for fibers lying near the center of the bundle and diminishes sharply for fibers within 50 microns of the surface.

摘要

在携带均匀传播波的多细胞制剂中,与每个细胞或纤维相关的细胞内和组织间电位对于表征制剂的电生理行为非常重要,特别是对于评估每个纤维所贡献的源。上述电位取决于许多因素,包括表征细胞内、组织间和细胞外区域的电导率、组织的厚度以及场点距组织表面的距离(深度)。本文提出了一项模型研究,描述了由平面波前引发的圆柱形心肌束中的细胞外和组织间电位分布以及电流流动。为简单起见,该束被视为一个双域。使用典型的电导率值,结果表明,在非常大的束(大于10毫米)中心附近的纤维的细胞内和组织间电位可以由被有限细胞外空间包围的单根纤维(油中的纤维)的电位近似,因此证明了芯导体模型的合理性。对于较小的束,组织间电位峰值小于芯导体模型预测的值,但仍然大到足以影响整体源强度。源强度的大小对于位于束中心附近的纤维最大,而对于距表面50微米内的纤维则急剧减小。

相似文献

1
Potential and current distributions in a cylindrical bundle of cardiac tissue.
Biophys J. 1988 Jun;53(6):907-18. doi: 10.1016/S0006-3495(88)83172-2.
2
Interstitial potentials and their change with depth into cardiac tissue.
Biophys J. 1987 Apr;51(4):547-55. doi: 10.1016/S0006-3495(87)83380-5.
4
Point source nerve bundle stimulation: effects of fiber diameter and depth on simulated excitation.
IEEE Trans Biomed Eng. 1990 Jul;37(7):688-98. doi: 10.1109/10.55679.
5
Simulation of propagation along a cylindrical bundle of cardiac tissue--II: Results of simulation.
IEEE Trans Biomed Eng. 1990 Sep;37(9):861-75. doi: 10.1109/10.58597.
6
Electric and magnetic fields from two-dimensional anisotropic bisyncytia.
Biophys J. 1987 Apr;51(4):557-68. doi: 10.1016/S0006-3495(87)83381-7.
7
Modification of a cylindrical bidomain model for cardiac tissue.
Math Biosci. 1991 Apr;104(1):59-72. doi: 10.1016/0025-5564(91)90030-m.
8
Interactions between adjacent fibers in a cardiac muscle bundle.
Ann Biomed Eng. 1996 Nov-Dec;24(6):662-74. doi: 10.1007/BF02684179.
9
Propagation on a central fiber surrounded by inactive fibers in a multifibered bundle model.
Ann Biomed Eng. 1996 Nov-Dec;24(6):647-61. doi: 10.1007/BF02684178.

引用本文的文献

1
Bidomain modeling of electrical and mechanical properties of cardiac tissue.
Biophys Rev (Melville). 2021 Nov 8;2(4):041301. doi: 10.1063/5.0059358. eCollection 2021 Dec.
2
Analytic modeling of conductively anisotropic neural tissue.
J Appl Phys. 2018 Aug 14;124(6):064701. doi: 10.1063/1.5036659. Epub 2018 Aug 10.
3
Analytic Modeling of Neural Tissue: I. A Spherical Bidomain.
J Math Neurosci. 2016 Dec;6(1):9. doi: 10.1186/s13408-016-0041-1. Epub 2016 Sep 9.
5
Propagation velocity profile in a cross-section of a cardiac muscle bundle from PSpice simulation.
Theor Biol Med Model. 2006 Aug 15;3:29. doi: 10.1186/1742-4682-3-29.
6
Effects of bath resistance on action potentials in the squid giant axon: myocardial implications.
Biophys J. 1997 Nov;73(5):2347-58. doi: 10.1016/S0006-3495(97)78265-1.
7
Interactions between adjacent fibers in a cardiac muscle bundle.
Ann Biomed Eng. 1996 Nov-Dec;24(6):662-74. doi: 10.1007/BF02684179.
8
Propagation on a central fiber surrounded by inactive fibers in a multifibered bundle model.
Ann Biomed Eng. 1996 Nov-Dec;24(6):647-61. doi: 10.1007/BF02684178.
10
Nonlinear summation of junction potentials in a three-dimensional syncytium.
Ann Biomed Eng. 1993 Jul-Aug;21(4):401-5. doi: 10.1007/BF02368632.

本文引用的文献

1
Quantitative formulations of electrophysiological sources of potential fields in volume conductors.
IEEE Trans Biomed Eng. 1984 Dec;31(12):868-72. doi: 10.1109/TBME.1984.325250.
2
Simulation of macro EMG motor unit potentials.
Electroencephalogr Clin Neurophysiol. 1983 Jul;56(1):52-62. doi: 10.1016/0013-4694(83)90006-8.
3
The active fiber in a volume conductor.
IEEE Trans Biomed Eng. 1974 Sep;21(5):371-81. doi: 10.1109/TBME.1974.324406.
4
Interaction between ventricular cells during the early part of excitation in the ferret heart.
Acta Physiol Scand. 1985 Sep;125(1):81-90. doi: 10.1111/j.1748-1716.1985.tb07694.x.
5
Forward and inverse potential field solutions for cardiac strands of cylindrical geometry.
IEEE Trans Biomed Eng. 1985 Aug;32(8):566-77. doi: 10.1109/TBME.1985.325481.
6
Geometry of cell and bundle appositions in cardiac muscle: light microscopy.
Am J Physiol. 1985 Jun;248(6 Pt 2):H792-803. doi: 10.1152/ajpheart.1985.248.6.H792.
7
A bidomain model for the extracellular potential and magnetic field of cardiac tissue.
IEEE Trans Biomed Eng. 1986 Apr;33(4):467-9. doi: 10.1109/TBME.1986.325804.
8
The forward problem in electroneurography. II: Comparison of models.
IEEE Trans Biomed Eng. 1986 Mar;33(3):335-41. doi: 10.1109/TBME.1986.325719.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验